P-PATR: A COMPILER FOR
UNIFICATION-BASED GRAMMARS

Technical Note 449

September 15, 1988

By: Susan Beth Hirsh

Artificial Intelligence Center
Computer and Information Sciences Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

H[m{i@m@{tﬁ@m@ﬂ

This research was supported by the Department of the Navy under Contract
NDO039-84-C-0524 with the Space and Naval Warfare Systems Command.

The views and conclusions contained in this document are those of the author and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
United States Government.

333 Ravenswood Ave. ® Menlo Park, CA 94025
t415: 326-6200 = TWX: 910-373-2046 ¢ Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
15 SEP 1988 2. REPORT TYPE 00-09-1988 to 00-09-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

P-PATR: A Compiler for Unification-Based Grammars £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 106
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

P-PATR: A Compiler for Unification-Based
Grammars

Susan Beth Hirsh
September 15, 1988

Contents

1 Introduction and Motivations) 4
2 Methods ‘ 5
2.1 Feature Structures as Prolog Terms B
2.2 BasicCompilation 7
23 Left-Corper Parsing 9
24 EpsilonRules 13
25 Lexical Organization 15

3 The P-PATR System ‘ 17
3.1 GrammarInput............. PN 17
3.1.1 Tokenization, 18

312 Tramslation e 19

32 Grammar Compilation, 24
3.2.1 Parameter Processing 24

3.2.2 Attribute Position Generation 25

3.23 Epsilon Precompilation,. 26

324 Compilation., 26

3.2.5 Lexical Compilation 30

4 Conclusions ' 31
41 FurtherWork 3

A User’s Manual for the P-PATR System 33
Al Starting UptheSystem 33
A.1.1 Loading Necessary Files 33

Al2 TraceFlags 0o, 34

A2 Compiling a PATR Grammar ¢ oo . 34
A2l Grammarloput. 35

A22 Grammar Compilation 35

AJ ParsingaSemtence 36
A31 Loadingthe DCG 36

A32 SentenceParsing 36

A4 Sample Session with the P-PATR System 38

B Sample Grammar and Prolog DCG 42
C Selected Code 54
Bibliography 101

Preface

I owe a great deal to many people, both for this thesis and for my mental
well-being. Of course, my thanks go to Lauri Karttunen. The fact that this
document can be understood by anyone other than myself is due to his diligent
dissection of the presentation. I am also grateful to Fernando Pereira for his
wonderfully responsive answers to my never-ending questions. His enthustasm
was quite infectious and kept me going when things looked bleak. I am deeply
indebted to Ivan Sag and Carl Pollard, members of my moral-support team, for
keeping me from giving up in times of crisis.

However, the person to whom I owe my most heartfelt thanks is Stuart
Bhieber, head of my moral-support team. The existence of this document is to
a large part due to his encouragement and technical guidance.

Finally, I must thank my family, an important part of my life. The love and
support of my parents is a constant comfort. My brother, Haym Hirsh, has also
contributed to the completion of this work, from the pictures in the text to his
reassuring presence on the other end of the phone when I call.

This research was supported by the Department of the Navy under Contract
ND0039-84-C-0524 with the Space and Naval Warfare Systems Command.

The views and conclusions contained in this document are those of the author
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advance Research Projects Agency,
or the United States Government.

1 Introduction and Motivations

P-PATR is a compiler for unification-based grammars that is written in Quintus
Prolog running on a Sun 2 workstation. P-PATR is based on the PATR-II' for-
malism [14] developed at SRI International. PATR is a simple, unification-based
formalism capable of encoding a wide variety of grammars. As a result of this
versatility, several parsing systems and development environments based on this
formalism have been implemented [18,5]. P-PATR is one such system, designed
In response to the slow parse times of most of the other PATR implementations.

Most of the currently running PATR. systems operate by interpretinga PATR
grammar. P-PATR differs from these systems by compiling the grammar into a
Prolog definite-clause grammar (DCG) [8]. :

The compilation is done only once for a given grammar; the resulting DCG
contains all the information in the original PATR. grammar in a form readily
conducive to parsing. The advantage of compilation is that less work needs to
be done during parsing, as some of the necessary computations have already
been performed in the compilation phase.

The use of Prolog as the target language of the compiler is advantageous for
two reasons, First, like PATR, Prolog uses unification as its method of opera-
tion. By compiling the PATR grammar into Prolog, P-PATR takes advartage
of the efficient implementation of Prolog unification. Second, the performance
of the resulting DCG can be improved further by compiling it with a Prolog
compiler.

This compilation, combined with the use of Prolog, gives P-PATR a speed
advantage over the other currently implemented PATR systems.

The rest of this paper is divided into three parts. The first section discusses
the basic algorithm used in compiling the PATR grammar into a Prolog DCG.
The second section consists of a detailed description of the actual procedure
followed during the compilation. The appendix contains a user’s manual for the
P-PATR system as well as a sample grammar and some selected Prolog code
from the system.

1Henceforth referred to simply as PATR.

2 Methods

What follows 13 a detailed explanation of the techniques used in compiling a
PATR grammar into a Prolog DCG. First, an explanation of the general mech-
anisms used in compiling a PATR grammar into a DCG is given. This com-
pilation scheme is then refined so that the DCG produced is equivalent to the
original PATR grammar.

2.1 Feature Structures as Prolog Terms

In Prolog, unification operates on terms, not on PATR feature structures. 1t is
therefore necessary to model PATR feature structures as Prolog terms to take
advantage of the Prolog unification mechanism.

Prolog terms differ from PATR feature structures in two major ways [14].
First, in a Prolog term a value is identified by its position, while PATR. feature
structures identify a value by associating it with an attribute. For example, the
two Prolog terms

head(agreement {number (plural), person(thixd)))
head{agreement(person{third), number{plural)))

do not unify. Because the order of the arguments is different, number (plural) is
matched against person{third) and the unification fails. The second difference
is that two Prolog terms unify only if they have the same number of arguments,
whereas two PATR feature structures may unify even if they differ in the number
of features. For example, the two terms

(1) head(agreement (number(plural), person(third)))
(2) head(agreement(number(plural)))

do not unify because the arities do not match. Thus, m representing a feature
structure as a Prolog term, each structure must be given a fixed order and arity.

There are two methods generally used in modeling feature structures as
Prolog terms. They will be referred to as failing and feature precompilation.

o Tailing

The first method for converting feature structures to Prolog terms involves
the use of tail variables. Each feature structure is encoded as a Prolog term
of the form?

2The Prolog list notation is used to represent a list with an uninstantiated tail variable [3].

[featurel: valuei, ... , featureN: valueN | TI,

where an uninstantiated tail variable is placed at the end of the list. Then,
as this structure is unified with new structures, the features in the new
structure are reordered in accordance with the features seen so far, and
any new features are unified with the tail variable. For example, feature
structures 1 and 2 are represented as the Prolog terms?

[head: [agreement: [number: plural,
person: third | T1] | T2] | T3]

[head: [agreement: [mumber: plural | T4] | T5] | Té6]

and then, when unified, person: third unifies with the tail variable in
the agreement list, producing the new Prolog term

[head: [agreement: [mnumber: plural,
person: third | Ti] | T2] | T3]

s Feature Precompilation

The second conversion method involves a preliminary pass through the
grammar to determine the arity and composition of all complex feature
values. On the second pass, every attribute-value pair is placed in the
correct position and order with respect to the other features. If a feature
is missing from the structure, an uninstantiated variable is inserted in
its place. For example, from feature structures 1 and 2 the following
information is extracted

head can be followed by the feature agreement, and
agreement can be followed by the two features,
number and person, in that order.

These feature structures are converted into the Prolog terms?

[head: [agreement: [number: plural,
person: thirdll]

[head: [agreement: [number: plural,
person: X113,

3This is not quite accurate. Throughout this paper feature structures are represented by
labeling the values with the attributes they represent, but only the values of the attributes
are actually present in the feature structures. The attributes are included for readability only.
4Variables are distinguished from atoms by an initial capital letter.

where the missing persen value in feature structure 2 is represented by the
uninstantiated variable X. The two Prolog terms now unify successfully
to

[head: [agreement: [number: plural,
person: third]]]

P-PATR uses the feature precompilation method described above in encod-
ing the feature structures associated with the PATR grammar entries as Prolog
terms. When the unification list of a rule is processed during compilation, this
feature information is used in creating the feature structures. For example,
given the information extracted from feature structures 1 and 2, the unification

<X head agreement person> = <Y head agreement person>
produces the following feature structures for X and Y

[head: [agreement: [persen: A, number: B]]]
[head: [agreement: [persen: A, number: D]]],

where the values of the person attribute are unified and the indeterminate
values for number are added to complete the agreement features.
2.2 Basic Compilation

The compilation produces a DCG that has a one-to-one correspondence with
the original PATR grammar.

e (Grammar Rules

PATR grammar rules consist of a context-free phrase structure (CFPS)
rule augmented with a list of unifications. For example

S — NP VP:
<S head> = <VP head>
<VP head agreement> = <NP head agreement>.
The CFPS part of the rule is

5 — BP VP

and the unifications give the added information that the agreement fea-
tures of the VP and the NP must be the same.

DCGs are a natural extension of context-free grammars (CFQ); a straight-
forward translation scheme is given by Pereira {7]. The constituents of a
DCG rule may be complex symbols, consisting of -a functor and a list of
arguments. In the translation of a PATR. rule to a DCG rule, the CFPS
part of the rule provides the functors of the DCG rule, while the feature
structure information from the unifications is encoded as the arguments to
these functors. For example, the grammar rule just presented is equivalent
to the DCG rule®

s((head: [agreement: Y1]) -—>
np([head: [agreement: Y1]),
vp([head: [agreement: Y]J).

e Lezical Eniries

PATR lexical entries consist of a word followed by a list of unifications.
For example

Word Uther:
<cat> = NP
<head agreement person> = third
<head agreement number> = singular.

This entry defines the word “Uther”; the unifications encode the informa-
tion that “Uther” is a third-person singular NP.

In translating a PATR lexical entry into a DCG rule, the category of the
word becomes the functor for the left-hand side (LHS) of the rule; its
argument fist is derived from the list of unifications. The right-hand side
(RHS) of the rule consists of the word itself. For example, the above
lexical entry is equivalent to the DCG rule

np([head: [agreement: [persom: third,
number: singutar]]]) -->
[uther].

The example just presented shows a very simple correspondence between
the PATR. and the DCG formalisms. For reasons explained in the next sectjons,
P-PATR actually uses a more complex compilation technigue.

*Reentrancy is represented by sharing variables.

. 2.3 Left-Corner Parsing

The default parsing algorithm for DCGs supplied by Prolog is a top-down, left-
to-right, backtracking algorithm. A well-known problem with top-down parsers
is that left-recursive grammars can cause them to go into an infinite loop [1).
Because PATR rules are allowed to be left recursive, a compilation technique
must be applied that enables the Prolog DCG to handle such rules.

P-PATR compiles a PATR grammar into a DCG that uses a bottom-up
parsing algorithm. Bottom-up parsers have no problem with left recursion [1].
The particular parsing technique used is called left-corner parsing [11].

The left corner (LC) of a CFG rule is the first symbol of the right-hand side
of the rule. For example, the LC of the rule

S — NP VP

is the nonterminal NP. In LC parsing, each rule is identified through its LC.
The first word in the sentence functions as the initial LC key. The rules whose
LC match the key are extracted. The next word in the sentence becomes the
new LC key for satisfying the remainder of the right-hand side of these rules.
If the right-hand side of the rule is completely satisfied, the left-hand side of
the rule is substituted for the LC key and the process is iterated. For example,
given the CFG rules

(3) s — KP VP

(4) VP — v

(5) ¥pP— ¥

(6) Vv — sleeps
(7) ¥ — Bill,

the sentence “Bill sleeps” is parsed as follows:

LC key = “°‘Bill?*’
matches the LC of Rule 7,
Rule 7 is satisfied

LC key = K
matches the LC of Rule 5,
Rule 5 is satisfied

LC key = NP
matches the LC of Rule 3,
leaving the VP of Rule 3 to be satisfied

LC key = "‘sleeps’’ ‘
matches the LC of Rule 6,
Rule 6 is satisfied

LC key =¥V
matches the LC of Rule 4,
Rule 4 is gatisfied

Rule 3 is satisfied,
no more input,
parse successful

This parsing algorithm avoids the problem of left-recursive rules.’

The DCG produced by P-PATR is based on the implementation of the L.C
algorithm in Matsumoto et al. [6]. Each PATR grammar rule of the type

LHS — RHS, ... RHS,
is converted into a DCG rule of the form
1c(RES1, Root) ~—>
down(RHS2), ... , down(RHSN),
1c(LHS, Root),
where LES and RHS1 through RESN constitute the feature structure information
from the unification list of the rule and Root is the feature structure of the
constituent currently being parsed. In the limit case, Rool and LHS are the
same: everything is its own LC.
le(Root, Root) -=> [.
For example, consider a CFG for noun phrases consisting of a rule

EP — Det K

and two lexical items: the:Det and girl:N. The corresponding DCG rule pro-
duced by P-PATR is

lc(det, Root) ——>
down(n),
le(np, Root).

8 Epailon rules atill pose a problem, but they are taken care of separately (Section 2.4).

1)

To understand how this rule is used by the Prolog parser, we first need to define
the predicates down and leaf:

down{Cat) -->
leaf(Child)},
lc(Child, cat).
leaf(Child) -->
[Woxd],
{lex(Word, Child)}.

The two words in the grammar are defined by the following Prolog clauses

lex{the, det)}
lex(girl, n)

Let us now see how the string “the gir]” is parsed as an NP by using this
DCG version of the original CFG. The parse is initiated with the call

down(np).
This results in the call
leaf (Child),

which consumes thle word “the” and binds the variable Child to the word’s
category det. The next step is to evaluate the call

lc(det, np)

by finding a match for this clause among the LC rules and satisfying the right-
hand side of the LC rule. In this case, we need to satisfy the calls

down(n}
lc(np, np)

The first clause triggers another call to
leaf(Child),
which now consumes the word “girl” and binds Child to n and the call

lc(n, n),

1

which is immediately satisfied because it is an instance of the rule
lc(Root, Root) -—> [J,

leaving the call
lc(op, np)

to be satisfied in the same way.

The flow of the computation can be pictured as the tree

down (np)
leaf(det) lc(det,np)
the down(n,n) lce(np,np)
leaf(n) lc(n,n) £l
girl -I1

This obviously differs from the usual parse tree,

NP

Det N

the girl

because of the way the LC algorithm uses the rules. The standard phrase-
structure tree can easily be produced as a side effect of the parse, if desired.

The above discussion is an oversimplification. In actuality, the values of
the variables Root, Cat and Child are feature structures rather than atomic
category symbols. For example, the grammar rule presented above becomes the

new DCG rule?
lc([cat: =np, head: [agreement: Y]], Root) ——>
down([cat: vp, head: [agreement: Y]1),
lc([cat: s, head: [agreement: Y]]), Root),
and the lexical entry for “Uther” becomes the Prolog clause
lex(uther, [cat: np,
head: [agreement: [person: third,

number: singular]l).

A PATR grammar is compiled into a DCG of the form just presented. The
compilation technique is revised slightiy in the next section to allow for the
epsilon rules that produce empty constituents.

2.4 Epsilon Rules
Epsilon rules in a CFG are of the form

A — ¢

"This occurs after feature information corresponding to the categories of the nonterminals
is added to the feature structures (Section 3.1.2).

13

This type of rule can pose a problem in applying the compilation technique
described above. In LC parsing, a rule is keyed by its left corner. If the LC of
a rule can be expanded to an empty string, the rule in effect acquires a second
left corner.

For example, consider the rules

(8) A — B A
(9) B — ¢

Because B can be expanded by rule 9 to an empty string, rule 8 has two left
corners: B and A. For the compilation technique described above to work, each
possible LC has to be recognized before a rule is compiled.

The problem is solved in two stages. First, all epsilon rules are extracted
from the grammar and put into a separate list. Then all of the remaining rules
are examined one by one. If the LC of a rule

LAES — RHS, ... RHS,
can be null, a new rule of the form
LHS — RHS; ... RHS,

is added to the grammar and subjected to the same test. For example, rule 8
above gives rise to the new rule

A — A

by virtue of the possible expansion of B in rule 8 by rule 9.

The technique outlined above is easily extended to PATR grammars. In a
PATR grammar, an epsilon rule is of the form '

A —

{ Definition).

In eliminating the epsilon rules, the unification information must be taken into
account. For example, for the PATR gramunar rules

(10) A — B A:
<A featurel>
<B feature2>

valuel
<A featurel2>

(11) B — :
<B feature2>

value2,

14

rule 10 gives rise to the new rule

A — A:
<A featurei> valuel
<A feature2> = value2.

2.5 Lexical Organization

We now turn to lezical templates and lezical rules. Lexical templates are named
feature structures and lexical rules are named transformations on feature struc-
tures. Both types of entries may include references to templates and rules in
their definition. Because templates and rules may be referred to before they are
defined, compilation takes place in two stages.

s Compilation: First Siage

Each lexical entry of the PATR grammar is compiled into a temporary
DCG rule of the form

word(Word, FeatureStructure) :-- ...
The right-hand side of a temporary DCG rule typically contains references
to the lexical templates and lexical rules that oceur in the entry. These
references cannot be evaluated, however, until the first stage is completed.

The references are of the form

template(Name, In, Out)

or
lex_rule(Name, In, Out),

where In is the input feature structure to a rule or template, and Out is
the output feature structure from the rule or template.

For example, the lexical entry

Word Uther:
noun

is compiled into the temporary DCG rule

word (uther, FeatureStructure):--
template(noun, In, FeatureStructure).

15

o Compilation: Second Siage

Once the first stage has been completed, the definitions of the lexical rules
and lexical templates reside in the Prolog data base {Section 3.2.4). The
temporary rules produced in the first stage of compilation could be used
by the parser, but this would be inefficient because the lexical templates
and rules would be executed each time they are referred to.

At this point, each lexical entry is executed once by Prolog, evaluating the
actions of the rules and templates, and the new feature structure produced -
is.used in converting the entry to its final form.

For example, the temporary DCG rule

word(boy, FeatureStructure):——
template(noun, In, FeatureStructure)

produces the final DCG rule
lex(boy, [cat: =nl))

once it is executed.

16

lﬁolog Database

compilation module

r 3

Clausal Form

f 3

input module

rPATR Grammar |

Figure 1: Flow Diagram of P-PATR

3 The P-PATR System

This section provides a step-by-step account of the compilation technique used
by P-PATR. An overview of the process is given in Figure 1. As shown in
the diagram, compilation is accomplished in two phases: grammar input and
grammar compilation. The grammar input phase produces an intermediate
representation of the PATR grammar that is used in the compilation. During
compilation, information is both written to a file reserved for the output DCG
and asserted into the Prolog data base. The information in the data base is
accessed as the compilation proceeds.

3.1 Grammar Input
This phase takes a set of text files containing a PATR grammar and converts it

to a Prolog clausal form used by later phases. The grammar is entered in two
distinct steps: tokenization and transiation. '

17

3.1.1 = Tokenization

Each entry in the PATR grammar 1s first tokenized and then translated into
clausal form. There are six classes of tokens recognized by the P-PATR tok-
enizer: identifiers, special characlers, {erminators, while-space characlers, com-
menls and sirings. Each token type is briefly described below.

e Identifiers
Identifiers are tokens that consist of any alphanumeric characters: a-z,

A-Z, and 0-9; and any special intraword characters: underbar (_), asterisk
(*}), apostrophe (*), questionmark (7), and backquote (*).

¢ Special Characters

Special characters are tokens consisting of a single character: colon (:),
number sign (#), slash (/), arrow (—+), square brackets ([, 1), angle
brackets (<, >), braces ({, }), parentheses ((,)), comma (,), equal sign
(=), or dash(-). A sequence of tokens consisting of a dash (-) and a right
angle bracket (>) is treated as the single token: arrow (—).

o Terminatlors

Terminators: period (.) and end_of file, signal the end of a token stream.
Terminators are considered a special case of special characters and are
treated as the single tokens: period (.) and end_of file.

o White-space Characters

White-space characters: space, newline, tab and formfeed are ignored.

o (Commenis
Comments, which begin when the single-token semicolon (;) is encountered
and continue to the end of the line, are ignored.

e Strings

Strings are any list of characters enclosed in double quotes (). Embedding
of double quotes inside a string is done by using a sequence of two double
quotes {"").

In all tokens, except for strings, no case distinction is made. All characters
are converted to lowercase. Any characters that are not legal in a P-PATR
token are ignored and a warning is issued.

18

3.1.2 Translation

The stream of tokens produced by the tokenization process is now translated
into clausal form. Each type of entry in the PATR grammar is translated into
a form that will be most appropriate in subsequent compilation (Section 3.2),
as follows: ’

Control Statements

The only type of control statement is the input statement. Input statements
are of the form :

Input {InputFile}.
When an input statement is encountered during translation, the current input

file is temporarily replaced by the file specified in the statement. Once this new
file is completely read in, the old input file is restored.

For example, the input
Input ‘testgram’.

causes the current input stream to become the file TESTGRAM.

Parameters

P-PATR recognizes two grammar-dependent parameters: siar! symbol and at-
tribute order. These parameters are set by statements that must appear in the
grammar before any rules or lexical items are encountered. Other parameters®
are ignored.

The parameter statements are processed as follows:

e Start Symbol
The start symbol is defined by a statement of the form

Parameter: Start Symbol is (Symbol}.

The start symbol for the grammar is recorded for use in further compila-
tion as a clause of the form

parameter {start(Symbol)).

8There are several other parameters that can be specified in a PATR grammar, but their
information is not utilized by this irnplementation.

19

s Attribute Onder
Attribute order is specified as follows

Parameter: attribute order is {At¢lributes).
This is converted to the Prolog clause
parameter (attributes(List)),

where List corresponds to a list of all attributes in the order specified.
For example, the input

Parameter: attribute order is cat head,
produces the clause

parameter{attributes([cat, head])).

Grammar Rules
The format for PATR grammar rules is

Rule { {Description) }
(LES) — {RHS):
{Definition).

Iu translating the rule into clausal form, all nonterminals are replaced by vari-
ables, which are used during compilation. Grammar rules are translated into a
clause of the form

rule(LHS, RAS, Def)

where LES is a variable associated with the left-hand side of a rule, RES is a list
of variables associated with the right-hand side of the rule, and Def is a list of
specifications defining the rule.

In the original PATR grammar, the category information of a nonterminal
can be omitted from the list of unifications because it is added automatically
during grammar translation. For example, the grammar rule

Rule { sentence formation }
S — NP VP:
<5 head> = <VP head>
<S head form> = finite
<VP subcat first> = <§P>
<VP subgat rest> = end

20

produces the clause

rule(s, [NP, VP]1, [[S, catl] = s,
[KP, cat] np,
[VP, cat] vp,
[S, head] = [VP, head],
[S, head, form] = finite,
[VP, subcat, first] = [NPF],
[vP, subcat, rest] = endl),

|}

where the unification information

[S, cat] = s
[KP, cat]
[vP, cat]

np
vp

is added to the list of unifications. The only exception is the nonterminal X
(with or without a subseript). If this appears in a grammar rule, no category
information is added, thus allowing expressions of any category to appear in
this position.

P-PATR follows the Z-PATR [18] convention for distinguishing among con-
stituents that have the same category. This is accomplished by means of numeric
tags. For example, if two constituents in the same rule are referred to as VP_1
and VP_2, they are both of category VP.

Lezical Items

Each type of lexical item in a PATR grammar is translated accordingly:

s Lezical Fnirtes

The format for lexical entries is

Word {Word):
{ Definition) .

In translating a lexical entry into clausal form, the information from the
original PATR entry is left unchanged. Thus, lexical entries are translated

into clauses of the form

lex(Word, Def),

21

where Word is a word being defined, and Def a list of specifications defining
the word.

The system augments each lexical entry with two new features: lex and
sense. It is assumed that the lexical entry does not already contain this
information; otherwise it will be duplicated. The lex value for a lexical
entry is the word itself. The sense value is the word concatenated with
a number that specifies how many previous definitions of this word have
occurred in this grammar. For example, given the entry

Word Uther:
<cat> = NP
<head agreement gender> = masculine
<head agreement person> = third
<head agreement number> = singular

<head trans> = Uther,

P-PATR. produces the clause

lex{uther, [[lex] = uther,
[sense] = uther,
[cat] = np,

[head, agreement, gender] = masculime,
[head, agreement, person] = third,
[head, agreement, number] = singular,
[head, trans] = uther]).

If there already exists one previcus definition for the word “Uther”, the
value for the sense feature in the second definition would be uther2.

Lezical Templates

Lexical templates are of the form

Let {Template) be
{Definition).

In translating a lexical template into clausal form, the information from
the original PATR lexical template is left unchanged. Thus, lexical tem-
plates are translated into clauses of the form

template(Name, Def),

where Bame is the name of a lexical template being defined, and Def a list
of specifications defining the template.

For example, the template

22

Let verb be
<cat> =

produces the clause

V.

temi:late(verb, [[cat] = v1).

Lezical Rules

Lexical rules have the form

Define (Rule) as
{ Definition) .

In the clausal-form encoding of the lexical rule, the in and out attributes
are replaced by variables, which are used during comp:la.tlon Thus, lexical
rules are translated into clanses of the form

lex_rule{Name, In, Out, Def)

where Name is the name of a lexical rule being defined, In is a variable
associated the with the input to the rule, Out is a variable associated with

the output of the rule,

For example, the rule

and Def is a list of specifications defining the rule.

Define agentlesspassive as:

<out
<out
<out
<out
<out
<out

produces the clause

cat> = <in cat>

subcat> = <in subcat rest>

head agreement> = <in head agreement>
head aux> = <in head aux>

head trans> = <in head trans>

head form> = passiveparticiple.

lex rule{agentlesspassive, In, Dut,
[[0ut, cat] = [In, catl,
[Out, subcat] = [In, subcat, rest],
{Out, head, agreement] = [In, head, agreement],
{Out, head, aux] = [Imn, head, auzx],
[Cut, head, trams] = [In, head, trans],
[Dut, head, form] = passiveparticiple]).

23

3.2 Grammar Compilation
This phase takes a text file containing a PATR. grammar in clausal form and
compiles it into a Prolog DCG. Grammar compilation is accomplished in five

distinct phases: parameler processing, atiribule position generation, epsilon pre-
compilation, compilation, and lezical compilation.

3.2.1 Parameter Processing
_ This phase processes the parameter statements specified in the PATR grammar.

Param:ter statements must occur first i the grammar to ensure their uss in
the entire compilation.

The two types of parameter statements are treated as follows:

s Start Symbol

A statement of the form
parameter{start(Symbol))

is asserted into the Prolog data base and written to the DCG file as
start (Symbol).

o Atlirthute Order

The attribute order is initially represented in clausal form as
parameter(attributes(List)),

where List is a list of attributes with a specified order.

For each attribute in the list, a clause is asserted into the Prolog data
base specifying the order of that attribute. This information is used in
maintaining the specified order during output of the feature structures.

This information is asserted into the Prolog data base as
print_order (Attribute, Position},

where Attribute is an attribute from the list of attributes, and Position
is the position of that attribute in the list of attributes.

For example, givenr the parameter statement

parameter(attributes([cat, head]),

24

the clauses

print_order(cat, 1)
print_crder(head, 2)

are asserted into the Prolog data base.

3.2.2 Attribute Position Generation

In PATR, features are pairs of attributes and values. The value of an attribute
can be one of three types: indeterminate, atomic, and complex. A complex value
is a set of attribute-value pairs. In the following discussion only the complex
values contribute information about the attributes; therefore, the other types
of values are not discussed.

This phase computes the arity of each complex attribute value and places
the features in a fixed order. The information is used in the conversion of PATR
feature structures to Prolog terms (Section 2.1).

For each attribute in a PATR grammat, a list is compiled that consists of
al]l the attributes that can follow that attribute in a path specification. For
example, given the lexical template

template(singnlar, [[head, agreement, number] = singular]),

the information recorded for the attribute head is that it can be followed
by agreement in a path specification. The information that the attribute
agreement can be followed by number is also recorded.

Once all information on the attributes has been compiled, this information
is translated into clausal form and is asserted into the Prolog data base and
written to the DCG file as

feature order(Attribute, Features, Variables)

where Attribute is the attribute currently being deseribed, Features is a list
of pairs consisting of an attribute and a unique variable representing the value
of that attribute, and Variables is a list of the variables in Features.

For example, from the above template the following clauses are generated
and asserted into the Prolog data base:

feature_order{main, [head:X], [X1)

feature_order(head, [agreement:Y], [Y])
feature_order(agreement, [number:2], [2]).

25

A dummy attribute main is created to notate those features that can occur as
the first feature in a path specification.

~ Since the list Features is used during the output of the feature structures,
the order of the attributes must reflect the order specified in the parameter
statement. Thus, the list is reordered. to reflect the specified order. Any at-
tributes whose order is not determined are just added to the end of the list of
features.

3.2.3 Epsilon Precompilation

This pass through the PATR grammar precompiles epsilon rules.

Epsilon rules are represented in clausal form as
rule{LHS, [1, Def),

where the grammar rule has no right-hand side. All other grammar entries are
ignored during this pass.

An epsilon rule is compiled into a DCG rule by applying the unification
equations attached to the rule, thereby producing a feature structure associated
with the rule (Section 2.1). The compiled epsilon rule is then asserted into the
Prolog data base and written to the DCG file as

null{LHS)

where LHS is the feature structure associated with the rule.

For example, the epsilon rule
rule{Det, [J, [[Det, head, agreement, number] = plurall}
is outputted as

null{[cat: det, head: [agreement: [number: plurailll).

3.2.4 -Compi]ation

This pass through the PATR grammar uses the informatior produced in the
previous phases to generate a DCG rule for each grammar entry. These DCG
rules are written to the DCG file (grammar rules) or recorded in the data base
to be further processed during the second compilation stage (lexical items).

Each type of grammar entry is compiled into a DCG rule as follows:

26

Grammar Rules

All of the unification equations in the grammar rule are applied (Section 2.1),
producing the feature structures associated with the rule. For example, the LHS
and RHS variables of the rule ' '

rule(ve, [V],[[VP, cat] = vp,
[v, cat] = v,
[VP, head] = [V, head],
[vP, subcat] = [V, subcatll)

become

VP becomes [cat: vp
head: X
subcat: Y]

V becomes [cat: v
head: X
subcat: Y].

These feature structures, together with the rule itself, are now compiled into
a DCG rule in left-corner format (Section 2.3).

At this point, the solution to the problem caused by epsilon rules is applied
(Section 2.4). As a result, one rule may expand to a set of rules. These rules
are written to the DCG file in a form that is slightly more complex than that
presented in Section 2.3

1c(RHS1, Parent, Branchi, Tree) -->
down{RES2, Branch2), ... , down(RHSHN, Branchl),
ic(LHS, Parent, NewTree, Tree)

where RES1 through RESK are the feature structures associated with the
right-hand side of the rule, Parent is the feature structure associated with
the left-hand side of the rule, Branchi through BranchN are the parse trees
associated with the right-hand side of the rule, Tree is the parse tree associated
with the left-hand side of the rule, and NewTree is the parse tree associated with
the entire rule.

For example, the rule presented above becomes the DCG rule

27

lc{fcat: v,
head: X,
subcat: Y],
Parent, Branchi, Tree) =-->
_ 1c{fcat: vp,
head: X,
subcat: Y],
Parent, vp(Branchi), Tree).

Lexical Items

Each lextcal item in the grammar is compiled into 2 DCG rule. These rules,
unlike grammar rules, are not written directly to the DCG file. They are asserted
into the Prolog data base to be compiled and written to the DCG file in a later
stage.

Each type of lexical item is asserted into the Prolog data base with a different
functor but they are processed in the same way. First, all of the specifications
in the definition are processed. If a specification is a unification, it is applied
(Section 2.1); if it is a reference to a lexical rule or lexical template, the reference
is put into the form

template(Name, In, Out)
or
lexrule{KRame, In, Out),

where In is the input feature structure to a rule or template, and Out is the out-
put feature structure from the rule or template. These references are expanded
in the second compilation phase.

o Lezical Eniries

Lexical entries are asserted into the Prolog data base in the form

word{Word, FeatureStructure):--
Def.

where Word is the name of a lexical entry, FeatureStructure ia the feature
structure associated with the lexical entry, and Def includes references to
rules and templates producing FeatureStructure.

For example, the lexical entry

lex{uther, [[lex = uther], [sense = utheri], noum])

28

is compiled into

word{uther, FeatureStructure): --
‘tamplate(noun, [lex: uther, sense: utheri],
FeatureStructure).

Lezical Templates

~ Lexical templates are asserted into the Prolog data base in the form

template{Name, FeatureStructure):-—-
Def.

where Name is the name of a lexical template, FeatureStructure is the
feature structure associated with the template, and Def includes references
to rules and templates producing FeatureStructure.

For example, the lexical template
template(mainverb, [[head, aux = falsel, verb])
is compiled into
template(mainverb, FeatureStructure):--
template(verb, [head: [aux: falsel],

FeatureStructure).

Lexical Rules

Unlike lexical entries and lexical templates, lexical rules are not allowed to
contain references to rules or templates in their definition. Thus, lexical
rules are asserted into the Prolog data base in the form

lex.rule(Name, In, Cut).
where Name is the name of a lexical rule, Inis the feature structure associ-

ated with the input to the rule, and Out is the feature structure associated
with the output from the rule. :

For example, the lexical rule
lex_rule{nom, [[Out, head]l = [In, head], [Dut, cat] = nl)
is compiled into

lexrule{nom, [cat: v, head: XJ, [cat: n, head: XI).

29

3.2.5 Lexical Compilation

Lexical entries are initially cornpiled into DCG rules with explicit calls to the
templates and lexical rules they utilize. Because these calls are re-executed
each time they are encountered, the system would be inefficient to use. At
the second stage of compilation, these references are eliminated by merging the
corresponding feature structures with the rest of the definition.

Once this process is completed, the DCG rules for the lexical entries no
longer contain any references to lexical templates or rules; therefore, the rules
and templates need not'be recorded in the DCG file.

The new lexical entries are written to the DCG file as
lex(Word, FeatureStructure).
For example, the initial DCG rules
word(boy, Y):—
template(noun, X, Y).
template(noun, X, Y):—-
Y = [cat: n].

produce the new DCG rale

lex{(boy, [cat: nl).

30

Sentence Parse time {in seconds)
Uther sleeps 0.066

Uther storms Cornwall 0.067

Knights sleep 0.084

Cornwall is stormed 0.1

A knight storms Cornwall | 0.1 .

Table 1: Execution Statistics

4 Conclusions

To test whether the P-PATR system lives up to the expectations that motivated
its development, it will be necessary to compare it with the two other currently
running PATR systems: D-PATR. [5] and Z-PATR [18]. Because of disparities in
the versions of the PATR, formalism assumed by each system, accurate statistics
are not presently available, but the preliminary results seem prormising.

Sample execution statistics can be seen in Table 1. These are the execution
results from the DCG produced by P-PATR, using as input the grammar in
Section B. It is easy to see from these statistics that a DCG produced by
P-PATR is a speedy parsing tool.

4.1 Further Work

P-PATR is far from complete. Changes are being made to improve the sys-
tem's performance and expand its capabilities. These enhancements include
the following:

o Improved Parser Performance

Because Prolog uses a depth-first control strategy, a DCG generates the
first parse for a sentence quickly, but when all parses must be produced, the
necessary backtracking slows the parse down significantly. To solve this
problem, predictive [9) capabilities will be added to P-PATR, to eliminate
some of the superfluous backtracking so that all parses can be found faster.

o Compalibilily with the Other PATR Systems

To allow better comparisons of performance, it would be desirable to be
able to run the same grammar on P-PATR as on the other two systems
discussed above. Some work is currently being done [16] on developing a
standard specifying a single version of the PATR formalism to which all

31

PATR systems would conform. Once this is done, the same grammar can
be used with equal ease on all PATR systems.

Morphological Analysis .

P-PATR does not currently perform morphological analysis. For each form
of a lexical entry in a PATR gramunar, a separate entry in the grammar
must be present. By encorporating the work being done on morphological
analysis in the PATR framework (2] into P-PATR,, only the stem forms of
the lexical entries need be entered into the lexicon. -

32

A User’s Manual for the P-PATR. System

A.1 Starting Up the System

To start P-PATR, load the file LOADPATR.PL into the Prolog data base.® This
file loads the rest of the system and initializes all execution flags.

A.1.1 Loading Necessary Files

The P-PATR system consists of three basic moduless READPATR.PL, COM-
PILEPATR.PL and PATRLIBRARY.PL. Each of these modules is in turn di-
vided further into submodules, which are loaded by their parent module. A
complete list of all files that must reside in the Prolog data base for compilation
to proceed is given below.

READPATR.PL

This module includes all files necessary for translating a PATR grammar into
clausal form. The files are:

¢ READTOKENS.PL: Reads in a PATR rule and returns it as a list of
tokens.

e READPATR.PL: Takes a list of tokens and translates it into clausal form.

COMPILEPATR.PL

This module includes all the files that are necessary in converting a clausal
representation of a PATR grammar to a Prolog DCG. The files are

e COMPILEPATR.PL: Compiles a clausal form into a DCG.
e READRULES.PL: Reads in a list of PATR rules.

s PARAMETERS.PL: Records the information contained in the parameter
statements.

e PATHS.PL: Compiles all information on the position and order of the
features. : .

®Loading a file into Prolog involves either compiling or interpreting that file. The current
implementation compiles these files, but the system could easily be modified to interpret them,
if desired. The difference is that it takes longer to compile than to interpret a Prolog file, but
a comptiled file executes mmch faster.

33

EPSILONS.PL: Preprocesses all epsilon rules.

COMPILEGRAMMAR.PL: Performs the actual compilation of the gram-
mar entries.

UNIFY.PL: Applieé the unification equations constraining a rule.

COMPILELEX.PL: Compiles all lexical entries.

PATRLIBRARY.PL

‘This module consists of a single file that contains predicates common to all of
the modules. The predicates included perform basic operations needed by the
entire system.

A.1.2 Trace Flags -

In LOADPATR.PL, there are four execution flags that can be toggled by the
user:

e trace_input (default ne): Yes prints out the clausal representation of
each PATR rule as it is processed in the grammar input module.

» trace_paths (default no): Yes prints the feature information corpiled
during execution of the attribute position generation module.

e trace_rules (default no): Yes prints out each DCG rule as it is processed
in the compilation module.

e load parser (default yes): No suppresses the loading of the compiled
DCG after compilation.

To change the values of any of the execution flags, the user must modify the
values in LOADPATR.PL.!®

A.2 Compiling a PATR Grammar

Once all of the necessary files reside in the Prolog data base, the system is ready
for use,

10Fhe values can also be changed later by means of the Prolog predicates abolish and
assert (3].

34

A.2.1 Grammar Input

The file to be compiled must first be translated into clausal form by a call to
the grammar input module. The calling sequence is

grammar (File),

where the name of the file to be compiled can be any Prolog atom or string [3].

The grammar input module then translates the file mnto clausal form and
puts the output into a new file whose name is that of the initial file with the
new file type extension PTRP. Wien the input module is invoked, it displays
the message

‘‘Reading ..."?

and, once input is completed, the execution time (in seconds) of the input
module is printed.

For example, the file DEMOGRAM.PATR is translated into clausal form
through the call

grammar (‘demogram.patr’),

producing the new file DEMOGRAM.PTRP.

A.2.2 Grammar Compilation

Once the PATR grammar is in clausal form, it is compiled into a Prolog DCG
by a call to the grammar compilation module. The calling sequence is

compilepatr{File),

where the file-type extension of the file name may be omitted, as it is assumed
“to have the extension PTRP.

The grammar compilation module then compiles that file into a DCG and
puts the output into a new file whose name is that of the initial file with the new
file-type extension DCG. When the compilation module is invoked it displays
the following

f‘Compiling ...’

35

and, once compilation is completed, the execution time (in seconds) of the com-
pilation module!! is displayed.

For example, the file DEMOGRAM.PTR-P is compiled through the call
compilepatr{demogram), |

producing the new file DEMOGRAM.DCG.

A.3 Parsing a Sentence
A.3.1 Loading the DCG

Once the PATR, grammar is compiled, the DCG file is loaded into the Pro-
log data base.!? When loaded, the DCG file itself loads a support module
PATRSUPPORT.PL containing additional predicates that are needed in pars-
ing. PATRSUPPORT.PL also loads a suhmodule PP.PL that contains a feature
structure pretty printer, as well as submodule READIN.PL that includes a sen-
tence reader. In all, the files that must reside in the Prolog data base before
parsing can proceed are

e File.DCG: DCG file produced by compilation module.
s PATRSUPPORT.PL: Support module for the parser.
e PP.PL: Feature structure pretty printer.

« READIN.PL: Sentence reader.

A.3.2 Sentence Parsing

Once 3]l necessary files are loaded, sentences can be parsed by entering the
statement

patr.

The parser is now ready for input.

11'This is not completely accurate. The execution tirne of the compilation module is dis-
played to two steps. First, the execution time of the compilation itself is displayed and if the
load parser execution flag has been toggled on, & second execution time is displayed that
corresponds to the loading time. :

12This can be done by toggling an execution flag or by loading it manually into the Prolog
data base.

36

Sentence Input

The input environment consists of an input loop for the sentences. Each sentence
entered at the prompt “” is parsed. End of input is signaled by the command
“control-d” entered at the input prompt.

Parser Output

Once a sentence is parsed, four pieces of information are returned by the parser:

o Number of parses

The number of parses for the sentence.

o Ezecution time

The time (in seconds) that it took to parse the sentence.

e Parse tree

A parse tree is displayed for each of the parses for the sentence. The parse
tree is represented as a parenthesized list.

For example, for the sentence “Uther sleeps” the parse tree might be
s(np(n(uther)), vp(v(sleeps)))

o Feature structure corresponding o the senience

A feature structure for each of the parses for a sentence is displayed as an
attribute-value matrix.

For example, a possible feature structure associated with the sentence
“Uther sleeps” is represented as

[cat: s
head: [form: finite
trans: [pred: sleep
argl: uther]
aux: falsel]

37

A.4 Sample Session with the P-PATR System

The following is a transcript of a session with P-PATR, using the grammar in
Section B.

fuintus Prolog Release 1.6 (Sun)
Copyright (€} 1986, Quintus Computer Systems, Inc.
Al]l rights reserved.

| 7- compile(loadpatr).

[pp.pl compiled (7.350 sec 1848 bytes)]
[readin.pl compiled (2.450 sec 964 bytes)l]
[patrsupport.pl compiled (18.017 sec BES2 bytes}]
[patrlibrary.pl compiled (2.100 sec 728 bytes)]
[readtokens.pl compiled (9.634 sec 2968 bytes)]
[readpatr.pl compiled (28.716 sec 9948 bytes)]
freadrules.pl compiled (1.067 sec 432 bytes}]
[paths.pl compiled {12.717 sec 3700 bytes}]
[epsilons.pl compiled (1.317 sec 620 bytes)]
[parameters.pl compiled {1.850 sec 496 bytes)]
[compilegrammar.p) compiled (5.483 sec 1520 bytes)]
[compilelex.pl compiled (0.634 sec 244 bytes)}]
[unify.pl compiled (3.950 sec 900 bytes)]
[compilepatr.pl compiled {29.833 sec 9388 bytes)]
[loadpatr.pl compiled (79.850 sec 26588 bytes)]

yes
| 7- grammar(’sample.patr’).

Reading ...
Runtime = 11,899994

yes
| 7- compilepatr{sample).

Compiling .
Runtime = 5.633995

Loading ...
[sample.dcg compiled (20.633 sec 3728 bytes)]

38

yes
| 7- patr.
|: Uther sleeps.
Runtime = 0.066000
Analysis # 1:
Parse Tree = s(np(uther),vp(v(sleeps)))
[cat: s
head: [form: finite
trans: [pred: sleep

argl: uther]
aux: false]l

Number of Parses = 1

| : Cornwall is stormed.

Runtime = 0.100000

Analysis # 1:

Parse Tree = s(np(cornwall},vp(vp(v(is}},vp(v(stormed})}))
[cat: s

head: [form: finite

trans; [pred: stomm
arg2: cornwalll]]

Number of Parses = 1

|: Knights sleep.

Runtime = 0.084000

Analysis # 1:

Parse Tree = s(np(nom(knights)),vp(v(sleep)))
fcat: &

head: [form: finite
trans: [pred: sleep

39

argi: knights]
aux: falsell

Humber of Parses = 1
|: A knight storms Cornwall.

Runtime = 0.100000
Analysis # 1:

Parse Tree = s(np(det(a),nom(knight)),
vp(vp(v(storms)),np(cornwall)))

[cat: s
head: [form: finite
trans: [pred: storm
argl: knight
arg2: cormwalll
aux: falsell

Kumber of Parses = 1
[: Uther storms Cornwall.

Runtime = 0.067000
Analysis # 1;
Parse Tree = s(np(uther),vp(vp(v(storms)),np(cornwall)))
[cat: s
head: [form: finite
trans: [pred: storm
argl: uther

arg2: cormwalll
aux: falsel]

Number of Parses = 1
|: Uther sleep.

Runtime = 0.050000

40

#%% Cannot parse [uther,sleep]
|: A knights storm Cormwall,

Runtime = Q.050000

*xx Cannot parse [a,knights,storm,cornwall]
{: D

yes

| ?- halt.

- [End of Prolog execution]

41

B Sample Grammar and Prolog DCG

3
HH " Demonstration Grammar
i3; {(adapted from Sample Grammar 4 in Shieber’s book on unification [141)

(L

ii5 Includes subject-verb agreement

HH complex subcategorization

HHH logical-form construction

HHH lexica) organization by templates
HE "and lexical rules

Parameter: Start Symbol is 5.

Parameter: Attribute order is cat lex sense head
subcat first rest
form agreement person

number gender
trans pred argl arg2.

Grammar Rules

4w wr

e wE wae

]
E3
"

Rule {sentence formation}
S -> Kp VP:
<S head> = <VP head>
<5 head form> = finite
<VP subcat first> = <NP>
<VP subcat rest> = end.
Rule {np formation}

NP -> Det Nom:

<NP head> = <Det head>
<NP head> = <Nom Head>.

Rule {plural nouns}
Det => :

-

<Det head agreement number> = plural.

42

Rule {trivial verb phrase}
VP -> V:

<VP head> = <¥ head>
<VP subcat> = <¥ subcat>.

Rule {complements}
VP_1 > VP_2 X:
<VP_1 head> = <VP_2 head>
<VP_2 subcat first> = <VP_1 subcat first>

<VP_2 subcat rest first> = <X>
<VP_2 subcat rest rest> = <VP_1 subcat rest>.

- Definitions
H

Let Verb be <cat> = v.

Let Finite be Yerb
<head form> = finite.

Let Nonfinite be Verb
<head form> = nonfinite.

Let ThirdPerson be <subcat first head agreement person> = third.
Let Singular be <subcat first head agreement number> = sjingular.
Let Plural be <subcat first head agreement number> = plural.
Let ThirdSing be Finite

ThirdPerson

Singular.

Let MainVerb be Verb
<head aux> = false.

Let Transjitive be MainVerb
<subcat first cat> = NP
<subcat rest first cat> = NP
<subcat rest rest> = end
<head trans argl> = <subcat first head trans>

43

<head trans arg2>

Let Intransitive be KMainVerb

<subcat first cat>

<subcat rest>

<head trans argl>

first cat>
rest first
rest first
rest first
Test rest>

<subcat
<subcat
<subcat
<subcat
<subcat

Let Raising be

Define AgentlessPassive

<subcat rest first head trans>.

NP
end

<subcat first head trans>.

= NP

cat> vP
subcat rest> = end

subcat first> = <subcat first>
= end. ‘

as <out cat> = <in cat>

<out subcat> = <in subcat rest>

<out head
<out head
<out head
<out head

agreement> = <in head agreement>
aux> = <in head aux>

trans> = <in head trans>

form> = passiveparticiple.

- wa

Lexicon

e we ws
wr wr ms

Word uther:

<cat> = np

<head agreement gender>
<head agreement person>
<head agreement number>
<head trans> uther.

Word cormwall:

<cat>
<head
<head
<head

=np

agreement number>
trans> = cornwall.

Word knights:

<cat>
<head
<head
<head
<head

= nom
agreement gender>
agreement perscn>
agreement number?>
trans> = knights.

agreement person’ =

= masculine

thixrd
singular

third
singular

= masculine

third
plural

44

Word knight:

<cat> = nom

<head agreement gender> = masculine
<head agreement person> = third
<head agreement number> = singulax
<head trans> = knight.

Word a:

<cat> = det
<head agreement number> = singular.

Word sleeps: Intransitive ThirdSing
<head trans pred> = sleep.

Vord sleep: Intransitive Plural
<head trans pred> = sleep.

Word storms: Transitive ThirdSing
<head trans pred> = storm.

Word stormed: Transitive AgentlessPassive
<head tramns pred> = storm.

Word is: Raising ThirdSing

<subcat rest first head form> = passiveparticiple
<head trans> = <subcat rest first head trans>.

45

The following is the DCG produced by P-PATR for the foregoing grammar:

ensure_loaded(patrsupport).
start(s).

feature_order (main, [cat;_6688,lex:_6681,senze:_6674,head: 6660,
subcat:_6667],
[_6688,_6681,_6674,_6660,_6667]).

feature_order(head, [form:_6873,agreement:_6880,trans:_6866,aux:_6887],
[_6866,_6873,_6880, _6887]1).

feature_order(subcat, [firat:_7024,rest:_7031],

[.7024,_70311).
feature_order(first, [cat:_7148,lex:_7141,sense;_7134,head:_7120,
subcat:_7127],
[7148,_7141,_7134,_7120,_71271).
feature_order(rest, [firat:_7328,reat:_7335],
[_7328,_7335]).
feature_order(agreement, [peraon:_7431,number:_7424,gender:_7438],
[_7424,_7431,_7438]).
feature_order(trans, [pred:_7558,argl: _7565,arg2:_7572],
[_7558,_7565,_7572)).

feature_order(argl, [pred:_7690,argl:_7697,arg2: 77041,
[_7690,_7697,_77041).

feature_order(arg2, [pred:_7822,argl:_7829,arg2:_7836],
[_7822,_7829,_7836]).

null([cat: det,
lex: _7973,
sense: _7978,
head: [form: _8072,
agreement: [person: _8117,
number: plural,
gender: _8127],
trans: _B082,
aux: _8087],
subcat: _7988]).

lc([cat: np,
lex: _8231,
sense: _B236,
head: _8241,
subcat: _B246],
_B691,_8746,_8693)-->
dom([cat: vp,
lex: _B8179,
sense; _8184,

46

head: [form: finite,
agreement: _8491,
trans: _B8496,
aux: _B8501],
subcat: [first: [cat: np,
lex: _B231,
senge: _B236,
head: _B241,
subcat: _8246],
rest: end]],
_B686),
lc([cat: =,
lex: _B8283,
sense: _B2B8,
head: {form: finite,
agreement: _B491,
trans: _B496,
aux: _BED1],
subcat: _B8298],
_B691,s(_8B746,_8686),_8693),

le([cat: det,
lex: _88B55,
sense: _BB60,
head: _B813,
subcat: _B870],
-9156,_9211,_9158)-->
down([cat: nom,
lex: _8803,
sense: _8808,
head: _8813,
subcat: _8818],
_9151),
lc(fcat: np,
lex: _8907,
senge: _8912,
head: _8813,
subcat: _B922],
-9156,np(_9211,_9151),_9158).

lc([cat: nom,
lex: _BB803,
sense: _BBOB,
head: [form: _9261,
agreement: [person: _9267,
number: plural,
gender: _9269],

47

trans: _9259,
aux: _9271],
subcat: _8818],
9283,.9338,_9285)-—>
le([cat: np,
lex: _8907,
sense: _B8912,
head: [form: _9261,
agreement: [person: _9267,
number: plural,
gender: _9269],
trans: _9259,
aux: _9271],
subcat: _89227,
_9283,np(_9338),_9285).

1c([cat: v,
lex: _9394,
sens>: _9399,

head: _9404,

subcat: _8405],

_9687,_9742,_9689)——>
le([cat: vp,

lex: _9446,

sense; _9451,

head: _5404,

subcat: _9409],

_9687,vp(_9742),_9689).

lc{fcat: vp,
lex: _9798,
sense: _9803,
head: _S808,
subcat: [firat: _10053,
rest: [first: _286,
rest: _10141]]1,
_10472,_10527,_10474)}-—>
down{_286,_10467},
lc(fcat: vp,
lex: _9850,
sense: _9855,
head: _9808,
subcat: [firat: _10053,
rest: _1014137,
_10472,vp(_10527,_10467),_10474) .

lex(uther, [cat: np,

48

lex: uther,
sense: utherl,
head: [form: _10838,
agreement: [person: third,
number: singular,
gender: masculinel,
trans: uther,
aur: _10848],
subcat: _10850]).

lex(cornwall, (cat: np,
lex: cornwall,

sense; cornwalll,
head: [form: _10838,
agreement: [person: third,
number: singular,
gender: _10846],
trans: cornwall,
aux: _10848],
subcat: _10850]).

lex(knights, [cat: nom,
lex: knights,
sense: knightsl,
head: [form: _10838, .
agreement: [person: third,
number: plural,
gender: masculine],
trane: knights,
aur; _10848],
subcat: _10850]).

lex(knight,[cat: nom,
lex: knight,
sense: xnighti,
head: ([form: _10838,
agreement: [person: third,
number: singular,
gender: masculine],
trans: knight,
aur: _10848],
subcat: _10850]).

lex(a, [cat: det,
lex: a,
sense: al,
head: [form: _10838,

49

agreement: [person: _10844,
number: singular,
gender: _10846],
trans: _10836,
: aux: _10848],
subcat: _10850]).

lex(sleeps,{cat: v,
lex: sleeps,
sense: sleepsi,
head: {form: finite,
agreement: _10846,
trans: [pred: sleep,
argi: _10840,
arg2: _10842],
aux: false],
subcat: [first: [cat: nop,
lex: _10966,
sense: _10964,
head: [form: _10956,
agreement: [person: third,
number: singular,
gender: _11322],
trans: _10840,
aur: _10960],
subcat: _10962],
rest: end]]).

lex(sleep,[cat: v,
lex: sleep,
sense: sleepl,
head: [form: _10844,
agreement: _10846,
trans: [pred: sleep,
argl: _10840,
arg2: _10842],
auxr: false],
subcat: [first: [cat: np,
lex: _10966,
sense: _10964,
head: [form: _10956,
agreement: [persom: _11170,
nuzber: plural,
gender: _11172],
trans: _10840,
aur: _10960],
subcat: _10962],

50

rest: end]]).

lex(storms, [cat: v,
lex: storms,
sense: stormsi,
head: [form: finite,
agreement: _10846,
trans: [pred: storm,
argl: _10840,
arg2: _10842],
aux: false],
subcat: [first: [cat: np,
lex: _10966,
sense: _10964,
head: [form: _10956,
agreement: [person: third,
number: singular,
gender: _11366],
trans: _10840,
aux: _10960],
subcat: _10962],
rest: [first: [cat: np,
lex: _10988,
sense: _10986,
head: [form: _10978,
agreement: _10980,
trans: _10842,
aux: _10%82]1,
subcat: _10984],
rest: end]]]).

lex(stormed, [cat: v,
lex: _10854,
sense: _10852,
head: [form: passiveparticiple,
agreement: _1084§6,
trans: [pred: storm,
argl: _10840,
arg2: _10842],
aux: false],
subcat: [first: [cat: mnp,
lex: _10988,
sense: _10986,
head: [form: _10978,
agreement: _10980,
trans: _10842,
aux: _10982],

51

subcat: _10984],
rest: end]]).

lex(is, [cat: v,
lex: is,
sense: isi,
head:
[form: finite,
agreement: _10840,
trans: _10836,
aux: _10842],
subcat:
[first:
[cat: np,
lex: _10984,
sense: _10982,

head:
[form: _11256,
agreement:

[person: third,
nupber: singular,
gender: _11264],
trans: _11254,
aux: _11266],
subcat: _10980],
rest:
[first:
[cat: vp,
lex: _10866,
sense: _10864,
head:
[form: passiveparticiple,
agreement: _10858,
trans: _10836,
aux: _10860],
subcat:
[first:
[cat: np,
lex: _10984,
sense: _10982,
head:
[form: _11256,
agreement:
[person:third,
oumber: singular,
gender: _11264],
trans: _11254,

52

aux: _11266],
subcat: _10980],
rest: end]],
rest: end]]]).

53

C Selected Code

% Module: COMPILEPATR.PL

% Author: Susan B. Hirsh

% Purpose: Compile a clausal form of a PATR-II grammar into a
A DCG.

%4 load all supplemental modules

:~ ensure_loaded(readrules). % read in PATR-II rules

:- ensure_loaded(parameters). % handle parameter statements
:~ ensure_loaded(paths). % generate feature information
:~ ensure_loaded(epsilons). % precompile epsilon rules

:~ ensure_loaded(compilegrammar). % compile the PATR-II grammar
:— ensure_loaded{ unify). % unify PATR-II equations

:~ ensure_loaded(compilelex). % precompile lexical entries

% Extermal predicates :

% Module COMPILEGRAMMAR.PL -

% compile_grammar/3 -
% compile PATR-II grammar into a DCG.

7 Module COMPILELEX.PL

% compile_lex/I -

% erecute each lerical entry in the database,
A

A

4 Module EPSILDNS.PL

% epsilons/2 -
% precompile epsilon rules.

%

% Module PARAMETERS.PL

%

% parameter/3 -

% process all parameter statements.
%

%

54

% Module PATHS.PL
%

% paths/2 -

% generate all feature information.

4

%

% Module PATRLIBRARY.PL

%

% file_name/3 -

% create a nev file name with a nev ending.
% write_clause/2 - .

% write clause to output siream in Prolog clause format.
%

%

% Module PATRSUPPORT.PL

%

% format_stats/0 -

rA output statistice on runtime.

% set_timer/0 -

% reset runtime timer.

%4

%4

% Module READRULES.PL

4

% input_rules/2 -

% Read in PATR-II rules from .PTRP file.

% compilepatr{ File)}

% Input :
% File - name of input file (wust have .PTRP extensiom)

% .
% Take a list of PATR-II rules produced by READPATR.PL and
% convert them into a definite-clause grammar {DCG).

compilepatr(File)} :-
format{ ’“nCompiling ...™n’, [0), ¥ output current status
input_rules(File, Rules), % read in grammar rules
output_rules{ File, Aules). % convert rules to DCG

55

n/. e . e e e

% output_rules{ File, Rules)

%

% Input :

% File - name of input file

% Rules - list of PATR-II rules

%

%

% Convert PATR-II rules into a DCG and output the DCG.

output_rules(File, Rules) :-
file_name(File, ".deg" , Output), % output file is File.dcg
open{ Output, write, UOutStream), % open outpat file
% insert line into DCG to include runtime support
write_clause((:- ensure_loaded{ patrsupport)),

OutStream),
compile_rules(Rules, OutStream }, % compile PATR-II rules
close(QutStream), % close output file
{ load_parser(yes) -» % is DCG to be loaded
load_deg{ Dutput } % load the DCG
| true). % do nothing
" - —
%
% compile_rules{ Rules, OutStream }
%
% Input :

% Rules - 1list of PATR-II rules

% OutStream - current ocutput stream
%

4

% Compile PATR-II rules into a DCG.

compile_rules(Rules, OutStream) :-

get_timer, % set runtime timer
parameter(Rules, OnlyRules, CutStream }, % handle parameters
pathe(OnlyRules, CutStream), % get feature information

% precompile epsilon rules

epsilons(OnlyRules, CutStream),

compile_grammar(OnlyRules, Rules, OutStream },% make DCG
% execute lexical entries

56

compile_lex(OutStream),
format_stats. % output compile statistics

R
%

% load_deg(Dutput)

%

% Input :

% DOutput - name of output file

%

%

% Load DCG into Prolog database.

load_dcg(ODutput) :-
format(’'"“nlLeading ..."n’,[),% output current status -
ensure_loaded{ Cutput).

57

% MHodule: COMPILEPATR.PL
% Submodule: READRULES.PL
% Author: Susan B. Hirsh
% . Purpose; Read in a list of PATR rules.

% External predicates :

%

% _

% Module PATRLIBRARY.PL

'/. .

% file_name/3 -

% create a nev file name with a ne? ending.

Y -
A

% input_rules(File, Rules)

%

% Input :

% File - input file name

%

% Dutput : .

% Rules - list of all PATR-II rules from input file

%

%

% Read in PATR-II rules from input file and put inte a list.

input_rules(File, Rules) :-

seeing(Infile), % save current input file
file_name(File, ".ptrp", Input), ¥ ipput file is File.ptrp
see(Input), % open input file
read_rules(Rules), % read in the rules

seen, % close input file

see(Infile). % restore input file

A
%
% read_rules{ Rules)

%

% Output :

% PRules - list of PATR-II rules

58

%
% Read in a list of PATR-II rules.

read_rules({ Rules)} :-
read(Rule), . % read in the first rule
read_more_tules({ Rule, Rules). % read in the rest

Y - S -
%

% read_more_rules{ PreviousRules, NewRules }

%

% Input :

% PreviousRules - list of PATR-II rules as it is being
4 built up

%

% Dutput :

% HewRules - list of PATR-II rules

%

% Read in a list of PATR-II rules.

Y stop at the end of the file
read_more_rules(end_of_file,]) :— !,

% keep reading until the end of the file

read_more_rules(Rule,l Rule | Rules 1) :-
read(NewRule), % read in a PATR-II rule
read_more_rules{ NewRule, Rules). ¥ read in the rest

59

% Module: COMPILEPATR.PL

% Submodule: PARAMETERS.PL

% Author: Susan B. Hirsh)
% Purpose: Record the information from the parameter statements.

% External predicates :

%

%

%4 Module PATRLIBRARY.PL

L4 :

% write_clause/2 -

4 ¥rite clause to output stream in Prolog clause format.

z -

%

% parameter{ Rules, NewRules)

%

% Input :

% PRules - list of PATR-II rules

s

% Dutput: ‘

% NewRules - list of PATR-II rules minus parameter statements
A

% :

% Handle parameter statements first, as they must appear only at
%Z the top of the file.

% handle start symbol
parameter([parameter{ start(Symbol)) | Rules], NeuRules,

QutStream):-
assert(start(Symbol)), % assert start symbol
write_clause((start{Symbol))}, QutStream), % write to output
paraneter{ Rules, NesRules, QutStream). % handle others

% keep track of attribute order
parameter([parameter(attrjbutes(List)) | Rules], NeoRules,
CutStream):—
% record the correct order
racord_order(List, 1),
% bhandle other parameter stmnts
parameter{ Rules, NewRules, DQutStream).

60

% ignore restrictor
paraneter([parameter(restrictor(_List }) | Rules], MewRules,
OutStream) :- .
parameter(Rules, NevRules, DutStream).

% ignore translation .
parameter([parameter(translation(_List)) | Rules], NewRules,
OutStream) :-—
parameter{ Rules, NewRules, CutStream).

% no more parameter statements - returm list minus parameters
parameter(Rules, Rules, _OutStream). .

o - —
% record_order(Attributes, Place)

%

% Input :

% Attributes - list of attributes in the order in vhich they
% are to appear

% Place - position in the list of the current attribute
%
%

% Record the print order of each attribute.

% record the position of each attribute
record_order([Attribute | Attributes], Place) :-

% assert for use in printing

assert(print_oxder{Attribute,Place) },

% increment position

KewPlace is Place + 1,

% go on to the next attribute

record_order(Attributes, NewPlace).

% no more attributes
record_order({ [J, _Place).

61

4
%
%
%
%

Module: COMPILEPATR.PL

Submodule: PATHS.PL

Author: Susan B. Hixsh

Purpose: Compile all information on position and order of
the features.

External predicates :

Mcdule PATRLIBRARY.PL

write_clause/2 -
write clause to output stream in Proleg clause format.

Module PATRSUPPORT.PL

print_order/2 -
the printing order of this feature in the feature structure.

paths{ Rules, OutStream)
Input :

Rules - list of PATR-II rules
OutS5tream - current output siream

Generate for each attribute a list of the features that can
follow it and assert this information into the data base
and output into output file.

For example :

The rule
rule{NP, [N], [[¥P,cat]l=np, [N,cat]=n, [HP,body)=[N,body]])

would produce the list :
feature_order(mwain,{cat:X,body:Y], [X,Y])

where the attribute ’main’ is a dummy attribute used to designate
that a feature folloving it was the first feature in a path

62

% specification.

paths(Rules, OutStream) :-
% create lists of Vars, Bindings, and Pairs
type_info(Rules, [Main], Types,[main=Main], Bindings, [,

Pairs),
calc_types(Pairs), % make pairs into paths
tails(Types), % get rid of tail variables

% assert paths into database and write into output file
output_paths(Bindings, QutStream).

R - — —
%

% type_info(Rules, 0ldTypes, Types, 0ldBindings,-Bindings,
% 0l1dPaths, Paths)

% Input :

% Rules - 1list of rules in PATR-II format
% 01dTypes - types found soc far

% 0l1dBindings - bindings found so far

% 0ldPaths - paths found so far

% Dutput :

% Types - list of types

% Bindings - list of bindings
% Paths - list of paths

% Extract from each rule the features used in that rule. From

% this feature information compile three different lists :

%

% Types : a list of variables associated with the features

% Bindings : a list containing information as to which attributes
% are bound to which variables.

% Pairs : a list specifying which features can follaw vhich others

% no more rules
type_info([], Types, Types, Bindings, Bindings, Pairs, Pairs).

% ertract info from each rule
type_info([Rule | Rules], Types, Rtypes, Bindings, Rbindings,
Pairs, Rpairs):-
% features are contained in the unification equations of a rxule
unifs(Rule, Unifs, Type), % get feature informaticn

63

% process the feature informatiecn
info{ Type, Unifs, Types, Ntypes, Bindings, Nbindings, Pairs,
Npairs),
% do the rest of the rules
type_info(Rules, Ntypes, Rtypes, Nbindings, Rbindings, Npairs,
Rpairs).

% unifs{ Rule, Unifs, Type)

% Input :
7% Rule - current PATR-II rule
% Type - what kind of rule thi= i=

% Dutput :
% Unifs - list of unifications for that rule

% Extract the unification equaticns from the rule.

% grammar rmle
unifs(rule(_Lhs,_Rhs,Unifs), Unifs, rule).

% lexical entry
unife(lex{_Word,Unifs), Unifs, lex }.

% lexical template
wnifs{ template{_Name,Unifs), Unifs, lex).

% lexical rule
unifs{ lex_rule(_Name,_InFS,_OutFS,Unife), Unifs, rule }.

Y -—
% info(Type, Unifs, 0DldTypes, Types, 0ldBindings, Bindings,
% DldPaths, Paths)

%

% Input :

% Type - the type of rule it is

% Unifs - 1list of unifications for that rule

% 0ldTypes - list of types so far

% 01dBindings - list of bindings so far

64

%
%
4
4
%
%
%
%
%

%

0l1dPaths - list of paths so far
Output :
Types - 1list of types

Bindings - list of bindings
Paths - list of paths

Extract feature information from the unification equations.

no more unifications in this rule

info(_All, []1, Types, Types, Bindings, Bindings, Pairs,

4
%

Pairs).

ignore template and lexical rule names, as these features are
handled in template or rule definitions

info(Kind, [Template| T], Types, Rtypes, Bindings, Rbindings,

%

%
%
%

Pairs, Rpairs) :-
atomic(Template), !, % this is a template or lexical rule
% go on to the next unification equation
info(Kind, T, Types, Rtypes, Bindings, Rbindings, Pairs,
Rpairs).

for rules :
handle unifications of the form : Pathl = Path2

E.G.,
<S head> = <VP head>

info(rule, [[_Varl | Featuresl] =

kA
%
%

[_Var2 | Features2] | T 1,

Types, Rtypes, Bindings, Rbindings, Pairs, Rpairs) :-

% unify the final feature values so that paths can unify

add_paths(Featuresl, Types, Ntypes, Bindings, Nbindings, Pairs,
Rpairs, main, Last),

add_paths(Features2, Ntypes, Mtypes, Nbindings, Mbindings,
KRpairs, Mpairs, main, Last),

% go on to the next unification equation

infe{ rule, T, Mtypes, Rtypes, Mbindings, RAbindings, Mpairs,

Rpairs).

handle unifications of the form : Path = val
E.G.,
<X cat> = np

info(rule, [{ _Var | Features]=Atom | T 1, Types, Rtypes,

Bindings, Rbindings, Pairs, Rpairs) :-
atomic{ Atom),

65

% add feature information
add_paths(Features, Types, Ntypes, Bindings, Wbindings, Pairs,
Npairs, main, _Last),
% go on to next unification
info(rule, T, Ntypes, Rtypes, Nbindings, Rbindings, Npairs,
Rpairs). .

% for lexical entries or templates :

% handle unifications of the form : Path = val
% E.G.,
% <cat® = np

info(lex, [Features=Atom [T], Types, Rtypes, Bindings,
Rbindings, Pairs, Rpairs) :-
atomic{ Atom),!,
% add feature information
add_paths(Features, Types, Ntypes, Bindings, Nbindings, Pairs,
Npairs, main, _Last),
% go on to nert unification
info(lex, T, Ntypes, Rtypes, Kbindings, Rbindings, Npairs,
Rpairs).

% handle unifications of the form : Pathl = PathZ
A E.G.,
% <head®> = <head>
info(lex, [Featuresl=Features2? | T }, Types, Rtypes, Pindings,
Rbindings, Pairs, Rpairs) :-
% unify the final feature values so that paths <an unify
add_paths{ Featuresi, Types, Niypes, Bindings, Wbindings, Pairs,
Npairs, main, Last),
add_paths(Features2, Ntypes, Mtypes, Nbindings, Mbindings,
Npairs, Mpairs, main, Last),
info(lex, T, Mtypes, Rtypes, Mbindings, Rbindings, Mpairs,
Rpairs).

%
%4
% add_paths(Features, 0ldTpes, Types, 0ldBindings, Bindimgs,
% Oldpaire, Pairs, Place, Last)

%

% Input :

% Features — list of features in one unification equation
% 0ldTypes - list of types so far

% 0ldBindings = list of bindings so far

66

%

DldPairs ~ list of pairs so far

% Place - previous feature

% Last - Var value of last feature on the list
4

% Output :

% Types - list of types

% Bindings - list of bindings

% Pairs - list of pairs

%

% Create the three list of Types, Bindings and Pairs as described.

%4 last feature, just return variable for later unifications
add_paths([], Types, Types, Bindings, Bindings, Pairs, Pairs,

Place, Last):-
% get variable equivalence of this attribute
search(Place, Bindings, Last).

% add on the Types, Bindings and Pairs
add_paths([Feature | Features], Types, Rtypes, Bindings,

Rbindings, Pairs, Rpairs, Place, Last)} :-
%1 get variable walue
search(Place, Bindings, Var),
% get Type and Binding information
checkpaths(Feature, Types, Ntypes, Bindings, Nbindings),
% get pair information
add_pairs(Var, Feature, Pairs, Npairs),
% handle next attribute
add_paths(Features, Ntypes, Rtypes, Nbindings, Rbindings, Npairs,
Rpairs, Feature, Last).

Y _—
%

% search(Place, Bindings, Var)

%

% Input :

% Place - current attribute to look up

% DBindings - list of bindings

%

% Dutput :

% Var - Prolog Var value of the attribute
%

%

% Look up the Var value of the cuxrent attribute on the Bindings

%

list.

67

% stop vhen you find the attribute
search{ Place, [Place=Var | _Bindings], Var) :- !.

% Xeep searching until you find it
search(Place, [_Binding | Bindings], Var) :-
search(Place, Bindings, Var).

Y - _—

%

% checkpaths{ Feature, Dldtypes, Types, Oldbindings, Bindings)
% .

% Input :

% Feature - current attribute

% 01dTypes - list of types

% 0ldBindings - list of bindings

%

4 Cutput

% Types - new list of types if attribute wvas added

% Bindings - new list of bindings if attribute was added

%

A

% Check if an attribute is bound in the Bindipgs list and add it
4 1if it isn’t already there.

% add attribute if it is not there
checkpaths(Feature, Types, [Var | Types 1, 0O,
[Feature=V¥ar]).

% if it is there, do nothing
checkpaths{ Feature, Types, Types, [Feature=Yar | Bindiogs],
[Feature=Yar | Bindings]) :- !.

% if it is not there, keep trying the rest of the list
checkpaths(Feature, Types, Rtypes, [Binding | Bindings J,
[Binding | Rbindings]) :-
checkpaths{ Feature, Types, Rtypes, Bindings, Rbindings).

z -
% add_pairs(Var, Feature, 0ldPairs, Pairs)

%

68

% Input :

% Var - var to add

% Feature - attribute to add

% 0ldPairs - previous list of pairs

% Output :
% Pairs - nev list of pairs

4 Add a Var and a Feature to Pairs list.

add_pairs(Var, Feature, Pairs, [Var : Feature } Pairs]).

Y- -
%

% calc_types(Pairs }

%4

% Input :

% Pairs - list of pairs

%

%

% Ooce all of the Pairs have been done, go throught the Pairs list
% and add all pairs to the one preceding them.

%

% For example :

% Pairs vill look like [[A:head],[A,cat]]

% and pnow A will look like [head,cat]

% add pair to list

calc_types{ [Type : Label | Pairs]):-
ingert{ Label, Type), % unify it into the Prolog variable
calc_iypes(Pairs). % go to mext pair

% no more pairs
calc_types([3).

Y -
% insert(Feature, Variable)

%

% Imput :

% Featwre - currenmt attribute

% Variable - variable to insert walue into

69

%

A

% Unify a feature into the Prolog variable if it is not already
% there.

% it is already there, do nothing
insert(Label, [Label | _ 1) :- t.

% unify feature into variable
insert(Label, [_ | Labels]) :-
insert{ Label, Labels).

Ym———— -

%

% tails(Types)

A

% Input :

% Types - list of types

% Change all tail variables tbat are sideeffects of Insert
4 to 0.

% change tail variable to [J

tails(Var) :=
var(Var), !, % this is a tail variable
Var = [].

% net a list, do nothing
tails(Atom) :=-
atomic(Atom), !.

% check all intermal lists
tails([Head | Tail 1) ;-

tails{ Head), % process first list
tails(Tail). % process the rest of the list
tails([).

%
%
% output_paths(Bindings)

70

% Input :
7% Bindings - list that nov has a feature and all the features
A that can follew it

% Go through the list of bindings that nov have all features in
% the variable and create paths.

% For example :

% Bindings will be main=[head,cat]

4 Path is [main, [head:A,cat:B],[A,B]]

% no more in bindings list
output_paths{ [J, _ODutStream).

% make paths for all bindings

cutput_paths{ [Binding | Bindings], OutStream) :-
make_path({ Binding, OutStream), % make the path
output_paths(Bindings, OutStream). 7 go to mext binding

S N

% make_path(Feature, OutStream)

% Input : .
7 TFeature - a feature and list of features that can follow it
% DutStream - current output stream

% Change path into Prolog variables and then assert and output.

% feature cannot be followed
nake_path(_Head={], _OutStream).
% process this path
make_path(Head=Features, CutStream) :-

% change path into variables

change(Head, Features, Labellist, VarList),

% assert and output

write_path(Head, LabelList, VarList, OutStream).

71

% change(Head, Features, LabelList, VarList)

% Input :

% Head - starting attribute

% Features - list of features that can follow Head
%

% Output :

% LabelList - list of Prolog variables and features for the path
% VarList - same as LabelList with no attributes

%

A

% Put path into Prolog variables

% Take binding

A main = [cat,head]

% and make the lists :

% LabelList - [cat:Cat,head:Head]

A VarList - [Cat,Head]

% no more paths
change({ _Head, [J, O, 1).

% change each path
change(Head, [Feature | Features],[Feature : Var | Labels],
[Var | Vars]) :-
change(Head, Features, Labels, Vars).

%
% . .
% write_path(MainFeature, Labellist, VarList, DutStreanm)

% Input :

% MainFeature - feature that all other features follow
% LabelList - list of attributes and variables

7 Varlist - same as Labellist with mo attributes

% OutStream - current output stream

A

%

% ODutput path as:

%
% feature_order(MainFeature, LabelList, VarList)

72

write_path(Main, Labellist, VarList,OutStream) :-

% reorder the list into printing oxrder

reorder(LabellList, OrderLabellList),

% output to screen if trace flag is on

(trace_paths(yes) —>

format(*Path is v n’, -
[feature_order(Main,OrderLabellList,VarList)])

| true),

% assert into database for use during compilation

assexrt(feature_order (Main,0OrdexLabellist,YarList) J),!,

% write intc output file for use during parse

write_clause((feature_order(Main,OrderLabellList,VarList)),

OutStream).

S — _— _—
Y

% reorder(FS, NevFS)

%

% Input :

% FS - feature structure to be reordered

%

% Output ;

% NewFS - feature structure with features as specified

%

%

% Reorder the features in the FS according to the order given
% 1in the parameter statement.

reorder(Pairs, HewPairs) :-
% attach the order in which they should appear
number{ Pairs, HumberedPairs),
keysort{ NumberedPairs, SortedPairs }, I sort by position
% get rid of position numbers
clean(SortedPairs, NewPairs).

%
%
% number{ FS, NevwFS)

%

% Ioput :

% FS - feature structure to be reordered

%

73

% Ountput :

% NewFS - feature structure vith features labeled with

% their position number

%

%

% Attach onto each feature in the FS the position number specified.

% number each feature
number{ [Label : Value | Rest 1,
[Position-(Label:Value) | NRest]):-
find_order(Label, Position), % get position number
number(Rest, NRest). % do the rest

% no more features

number([0, [0).

Y ———————— -
%

% find_order(Feature, Position)

%

% Input :

% Feature - feature to get position of

%

% Output :

% Position - positiorn number of the feature
%4

A

% Get the position number of the feature

% order was specified
find_order(Label, Position) :-
print_order(Label, Position)}, !. ¥ specified order

% no order given, affir to the end
find_order(_Label, 9999).

Y _
%

%4 clean(FS, NewFS)
%4

% Input :

T4

% FS - feature structure with feature positions attached

% Output :

% NewFS - feature structure without feature pesitions
%

%

% Remove position numbers attached to the features.

% get rid of position number
clean([_N-{Label:Value) | Nrest],
[Labe) : Value | Rest] } :-
clean{ Nrest, Rest).

% no more features

clean({ O, OO).

75

% Module: COMPILEPATR.PL
% Submodule: EPSILONS.PL
% Author: Susan B. Hirsh
% Purpose: Preprocess all epsilon rules.

% External predicates :
4

%

% Hodule UNIFY.PL

Y .
% apply_rule_unifs/1 -

% apply the unification equations for a grammar or lexical rule.

% HModule PATRLIBRARY.PL

% write_clause/2 -

% write clause to output stream in Prolog clause format.
Y e e e e e et e
%

%4 epsilons(Rules, NewRules, OutStream)

%

% Input :

% Rules - List of PATR-IT rules

% OutStream - current output stream

A

% Output :

% MNewRules - List of PATR-II rules minus epsilen rules
4

%

% Precompile epsilon rules for use in compilatiomn.

% no mozre xules
epeilons([0, _DutStream).

% go through the rules

epeilons([Rule | Rules J , OutStream) :-
e_zrule{ Rule, DutStream), % is it an epsilon rule?
epsilons{ Rules, DutStream). % go to next rule

76

Y= e _—
Y)
% e_rule(Rule, OutStream)

%

% Input :

% Rule - PATR-II rule

% DutStream - current output stream

%4

%4

% Compile the epsilon rule into a Prolog clause.

% The clause is of the form : .

% mull(F5)

% vwhere FS is the feature structure associated with the rule.

% this is an epsilon rule

e_rule(rule(Lhs,[],Unifs), OutStream) :-
apply_rule_unifs(Unifs), !, % unify equations
% output to screen if trace flag is on
(trace_rules(yes) >
format(’EPSILON Rule is “v~n’, [null(Lhs)])
I true), .
% assert into the database for use during compilation
assert({ null(Lhs)), !,
% output to file.dcg
write_clause((null(lhs)), OutStream).

% error - canmot compile this rule
e_tule(rnle(Lhs,{],Unifs), _OutStream) :-
format(’ n#»» Cannot compile rule: “wn’,[rule(lLhs,[],Unifs)]).

% mnot an epsilon rule
e_rule(_Rule, _OutStream).

77

%
%
%
%

%
%
%

%

%
%
%
%
%

Module: COMPILEPATR.PL

Submodule: COMPILEGRAMMAR.PL

Author: Susan B. Hirsh

Purpose: Perform the actual compilation of the grammar entries.

External predicates :

Module UNIFY.PL ~

apply_lex_unifs/5 -
apply the unification equations for a template or lexical
entry.

apply_rule_umifs/1 -
apply the unification eguations for a grammar or lexical rule.

Module PATRLIBRARY.PL

clausify/3 -

create Prolog clause from a head and a list of clauses.
reverse/3 -

reverse a list.
vrite_clause/2 -

write clause to output stream in Prolog clause format.

Module PATRSUPPORT.PL

find_category/2 -

find the value of the category attribute in a feature structure.
null/1 -

precompiled epsilon rule.

compile_grammar(Rules, RuleList, OutStream)

Input :
Rules - list of rules to be made into DCG
Rulelist — list of rules in current PATR-II grammar
(utStream = current output stream

78

A
% Take each PATR-II rule and convert it into a DCG rule.

% no more rules to compile
compile_grammar([], _RuleList, _OutStream).

% compile each rule
compile_grammar([Rule | Rules], RuleList, DutStream) :-—
% compile the rule
compile_rule{ Rule, RuleList, DutStream),
% do next rule
compile_grammar(Rules, RuleList, CutStream).

% ——

%

% compile_rule(Rule, RuleList, CutStream)
%

% Imput :

% PRule - current PATR-II rule

% RuleList - list of all rules in ctrrent PATR-II grammar

% OutStream - current output stream

%

%

% Convert each PATR-II rule into a DCG rule or a Prolog clause.
% Grammar rules become DCG rules and lexical items become

% directly executable Prolog clauses that are executed when

4 compilation is completed, resulting in full lexical entries.

% ignore epsilon rules, because they vere precompiled
compile_rule(rule(_Lhs, [, _Unifs), _Rules, _OutStream).

% error - parameter statements must be at start of the file
compile_rule(parameter(_Statement), _Rules, _QOutStream) :-
format{’ n*#» Parameter statements must occur at start of grammar file!™n’,[]).

% handle grammar rules
% grammar rules are compiled into DCG rules of the form :

%

% lec(Rhsi, Parent, 0ldBranch, NewBranch) —>

% down(Rhs2, Branch?),...down{ RhsN, BranchN),
% 1lc({ Lhs, Parent, Tree, NewBranch).

%

% where:

79

% Rhsil..RhsN - element of the right-hand side of the rule
% Parent - variable associated with the parent of the rule
% 0OldBranch - parse tree so0 far

% MewBranch - parse tree after application of this rule

% Branch2..BranchH - parse trees for each node

%4 Tree - parse tree for that rule

compile_rule(rule(Lhs, Rhs, Unifs), _Rules, OutStream):-
apply.rule_unifs{ Unifs), % uwnify equations
% create the DCG rule for the initial rule
grammar_rule(Lhs, [Rhs], OutStream),
% return nee list of rules with epsilon expansions
epsilon(Rhs, AllRhs),
% create the DCG rule for the grammar rules
grammar_rule{ Lhs, A1l1Rhs, DutStream).

% handle lexical rules

% lexical rules are compiled into Prolog clauses of the form :
%

% lex_rule(Name, InFS, GutFS).

%

% where:

% Name - name of this lexical rule

% InFS - input feature structure to this rule application

% OutFS - output feature structure after rule application

compile_rule(lex_rule(Name, InFS, OutFS, Unifs), _Rules,
_OutStream):-
apply_rule_unifs(Unifs), % unify equations
assert(lex_rule(Name,InFS,0utFS)). % assert into database

% handle lexical entries

% lexical entries are compiled into clauses of the form:
4

% word(Name, FS) —>

% applications of lexical rules and templates into
% F51..F5N, where last application puts result

% into FS.

%

compile_rule(lex(Word, Unifs), Rules, _OutStream) :-
% unify equations
apply_lex_unifs(Unifs, Rules, List, HeadFS, _FS J,
% put inte clause form
clausify(word(Word,HeadFS), List, Clause),
assexrt(Clause).

% handle lexical templates

80

% lexical templates are compiled into clauses of the form :
%
% template(Name, InFS, OutFs) -->

%4 applications of lexical rules and templates into
% FS1..FSN, vhere last application pute result
% into OutFS.

%

compile_rule(template(Name, Unifs), Rules, _OutStream) :-
% unify equations
apply_lex_unifs(Unifs, Rules, List, OutFS, InfS),
% put rule into clause form
clausify(template(Name,InFS,0utFS), List, Clause),
assert(Clause).

% rule could not be compiled - error
compile_rule(Rule, _Rules, _QutStream) :-
format(’ n#** Cannot compile rule: “wv™n’,[Rule]}.

%
%
% grammar_rule(Lhs, Rhe, OutStream)

%

% Input :.

% Lbs - left-hand side of the rule

% BRbs - all possible right-hand sides for this rule

% OutStream - current cutput stream

A

%

% Take each possible Rhs for the rule and create a DCG rule for
4oit.

% make a DCG from each Rhs

grampar_rule(Lhs,[[Rhsl | RhaN] | MoreRhs],0utStream) :-
% create right-hand side
rha{ Lhs, RhsN, Parent, [J, Clauses, Branch, NewBranch),
start_symbol(Lhs, DutStream J, % find grasmar start syabel
% output new DCG rules to the screen if trace flag is set
(trace_rules(yes) ->
format(’GRAMMAR RULE is "v™n’,

[(1c(Rhsl,Parent,Branch,NewBranch) --> Clauses)])
| true),
% output new DCG rule to file.dcg
write_clause((1c(Rhs1,Parent,Branch,NewBranch)-->Clauses),
CutStream),

81

% go to next right~hand side
grammar_rule(Lhs, MoreRhs, DutStream).

% no more right-hand sides to make rules from
grammar_rule(_Lhs, [J, _DutStream).

A —
%

% rhs(Lhs, Rhs, Parent, Branch, List, 0ldBranch, NewBranch)

%

% Input :

% Lhs - left hand side of the rule

% Rhs - All but first of right-hand side of the rule

% Parent - parent of this rule

% DldBranch - branch variable for the left-hand side of the rule
% NewBranch - branch variable for the left-hand side of the rule
A

% Output :

% List - list of Rhs elements in the form for an LC rule

% Branches - list of branches as variables in the parse tree

A

kA

% Create the clauses for the right-hand side of the DCG rule

% keep track of branches and build up right-hand side
ths{ Lhe, [Rh=1 | Rhs], Parent, Branches, {(down(Rhs1,Branch), Neths)
0ldBranch, NewBranch) :-
rhs(Lhs, Rha, Parent, [Branch | Branches], NewRhs, 0ldBranch,
NewBranch).

% no more hranches, create left-hand side
rhs{ Lhs, [0, Parent, Branches, lc(Lhs, Parent, Tree, NewBranch),
0ldBranch, NewBranch) :-
% get category for parse iree
find_category(Lhs, Cat)},
% put constituents in proper order for tree
reverse(Branches, [J, Constituents),
% put into form Cat{0ldBranch,Constituents)
Tree =..[Cat|[01ldBranch|Constituents]].

%
%

82

% epsilon{ Rule, Newrules)

4

% Input :

% Rule - current rule

4

% Output : .

% Newrule - a list of all possible right-hand sides for this
% rule

4

% .

% As long as the first element of the right-hand side of the rule
% can be expanded by an epsilon rule, return the rule minus that
% element.

%4

% For example :

% The rules 5 -> NP VP

% NP -> e

%

% Will produce the 1list [VP], since the NP can be expanded by
% the epsilon rule. When returned, there are understood

% to be two rules nov instead of the one. The rules are:

%4

A S => NP VP

% S =>Vp

% check the first element of the right-hand side

epsilon{ [Rhs1 | Rhs], [Rhs] HewRhs]) :-
null{ Rhsl), !, % can be expanded by an epsilon rule
epsilon{ Rhs, NewRhs). % check if next can be

% no more nonterminals can be expanded by epsilon rule
epsilon(_Rhs, []).)

%4 start_symbol(Lhs, QutStream)

% Input :
% Lhs - left-hand side of the rule
% ODutStream - current output stream

%

% If no start symbol for the grammar has been specified, it is
% the nonterminal on the left-hand side of the first rule.

83

% start symbol is already specifijed
start_symbol(_Lhs, _OutStream } :-
start(_Cat), !. 7 start symbol is in database

% no start symbol, need to add one
start_symbol(Lhs, OutStream } :-
find_category(Lhs, Cat)}, % get Cat of start symbol
assert(start(Cat))}, % assert as start symbol
% start symbol is needed in parsing, so output it to parser file
write_clause((start(Cat))} , OutStream).

84

% Module: COMPILEPATR.PL

% Submodule: UNIFY.PL

% Author: Susan B. Hirsh

% Purpose: Apply the unification equations constraining a rule.

% External predicates :

A

A

% Module PATRSUPPORT.PL

i

% thepath/4 -

% erxtract the Value for a particular feature from a feature structure.

A
%
% apply_rule_unifs(Unifs)

% Input :
% Unifs - list of unifications for the rule

% Unify the values in each equation in a grammar or lexical rule.

% handle unifications of the form : Pathl = Path2

4 E.G.,

% <S head> = <VP head>

apply_rule_unifs([[Varl | Featuresl]=

[Var2 | Features2] [TJ) :-

% find paths from these features and unify values
find_path(main, Featuresl, Val, Varl),
find_path(main, Features2, Val, Var2),
apply_rule_unifs(T).

% handle unifications of the form : Path = val
%4 E.G.,
% <X cat> = np
apply_rule unifs([[Var | Features J=Atom | T]):—
atomic(Atom),
% find location of this feature
find_path(main, Features, Atom, Var),
apply rule_ unifs(T).

85

% no more unification eguations
apply_rule_unifs([J).

A ——— _— ——— e
KA

% apply_lex_umifs{ Unifs, Rules, List, HeadFS, FS)

%

% Input :

% Unifs - list of unificatiocns for the Tule

% BRules - list of rule ir the grammar

A

% Output :)

% List - list of rules to assert

% HeadFS - feature structure for head of clause

% FS - initial input feature structure

%

A

% Unify the values in each equation in a lexical entry or template.

% no more wmifications to do
apply_lex_unifs{ [], -Rules, [J, FS, FS).

% handle unifications of the form : Path = val
% E.G.,
A <X cat> = np
apply_lex_unifs({ [Features=Atom | T], Rules, List, HeadFS,
FS):-
atomic{ Atom),!,
%4 get position of this feature
find_path(main, Features, Atom, FS),
apply_lex_unifs(T, Rules, List, HeadFS, FS).

% add application of a lexrical template to the new DCG rule
apply_lex_unifs([Atcm | T], Rules,
[template(Atom,FS,TempF5) | List],
HeadFS, F5) :-
atomic{ Atom),
% make sure this is a template
find_type(Atom, Rules, template),!,
apply_lex_unifs(T, Rules, List, HeadFS, TempFS).

% add application of a lexical rule to the new DCG rule

apply_lexmifs{ [Atom | T] , Rules,
[lex_rule(Atom,FS,TempFS) | List 1,

86

HeadF$, FS) :-
atomic(Atom), ’
apply_lex_unifs{ T, Rules, List, HeadFS, TempFS).

% handle unifications of the form : Pathl = PathZ
% E.G.,
% <head> = <head>
apply_lex_unifs([Featuresi=Features2 | T] , Rules, List, HeadFS,
FS) :-
find_path(main, Featuresl, Val, FS),
find_path(main, Features2, Val, FS),
apply_lex_unifs{ T, Rules, List, HeadFS, FS).

o’ - _— ——
%

% find_path{ PrevFeature, Features, Value, Var)

%

% Input :

% PrevFeature - previous feature in the path

% Features - list of features in this equationm

% Value - postion of feature in feature structure

% Var - feature structure unifications are acting on
4

%

% Follow a path of features and return the value at the end.

% do for each feature in list
find_path{ Place, [Head | Rest] , Atom, Var) :-
% search in path information
- thepath(Place, Head, Var, Path),
find_path{ Head, Rest, Atom, Path).

% stop at end of feature list
find_path{ _Place, [J, Atom, Atom).

2 —_ - _—
%

% find_type(Atom, Rule, Type)

4

% Input :

% Atom - name of current template or lexical rule

% Rule - top value on rule list

87

%

% Output :

% Type - template or rule, depending on type of rule
%

A

% Return whether a lexrical item is a template or lexical rule.

% lexical template
“find_type(Atom, [template(Atom,_Unifs) | _Tail] ,
template) :- !,

% lexical rule
find_type(Atom, [lex_rule(Atom,_InFS,_OutFS, _Unifs) | _Tail],
rule) :- !.

% keep searching

find_type(Atom, [_Head | Tail 1, Type) :-
find_type(Atom, Tail, Type).

88

% Module: COMPILEPATR.PL

% Submodule: COMPILELEX.PL

% Author: Susan B. Hirsh

% Purpose: Compile all lexical entries.

% External predicates :

%

%

% Module PATRLIBRARY.PL

%4

% vrite_clause/2 -

4 vrite clause to output stream in Prolog clause format.
%

%

% Module PATRSUPPORT.PL

%

% word/2 -

% lexical entry from the database.

A
%-

% compile_lex(DutStream)

%

% Input :

% DutStream - current output siream

4

%

% Precompile each lexical entry. This involves actually
% executing each one and then outputting the new entry as
% lex{ Word, FS).

% execute the lexical entry and output it
compile_lex{ OutStream) :-
word{ Word, FS), % execute lexical entry
% output to screen if trace flag is set
{ trace_rules{ yes) ->
format{ ’'LEXICAL ENTRY is “®n’, [(lex{(Word,FS) } 1)
! true),
% write lexical entry to output file
write_clause{ (lex{Word,FS)), OutStream },
fail. % go to next lexical emtry

89

% no more lexrical entries
compile_lex(_OutStream).

90

% Module: PATRSUPPORT.PL
% Author: Susan B. Hirsh
% Purpose: Support module for the parser.

% Predicates necessary at runtime :

%4

%

% LC Parser -

%

% patr/o0 -

% input loop using start symbol.

% parse/2 -

% get all parses for a sentence

% print_parses/2 -

% print parses and parse trees for a sentence.
% misc. LC predicates ~ parse/2, down/2, 1lc/4, and leaf/2

% Utility predicates -

%

%4 alphanumeric/1 -

% character is alphanumeric.
% append/3-

% concatenate two lists.

% case_shift/2 -

% convert a list tc lower case.
% concat/3 -

% concatenate two atoms.

%4 digit/1 -

% character is a digit.

% end_file/1 ~
% end of file character.
% find_category/2 -
%4 find value of category attribute in a feature structure.
Y% format_stats/0 -
% print runtime statistics.
full_stop/1 ~

A

%4 .

%4 member/2 -

%4 check membership in a list.
% new_line/1 -

A new-line character.

% string_size/2 -

%4 get length of an atonm.

% set_timex/0 -

91

% set runtime timer.
% thepath/4 -

% return the value of a path.
% upper/1 -
% . character is upper case.

% set up the system :

% declare type of predicates

:— dynamic(null}/1). % epsilon rules
:— dynamic(start/1). % start symbol
:— dynamic (feature_order/3). % path information

% operator definition
:=~ op(500,xfx,:).

% LC rules appear in two files
- pultifile lc/6.

1~ no_style_check(all). % suppress warnings

:— ensure_loaded(pp). % load prettyprinter
+= ensure_loaded(readin). % load sentence reader

% predicates mecessary for the LC parser to run

4 initial calling sequence
parse(Cat, Tree) --> down(Cat, TTee).

% pick up a new left cormer vhen ome has been processed

% epsilon rules
domn(Cat, 00) --> { null{ Cat) }.

% get next word and find whose left cormer it is

92

down(Cat, Tree) -—>
leaf(Child, 0ldTree),
1c(Child, Cat, 01dTree, Tree).

% every pbrase is the left corner of itself
lc(Type, Type, Tree, Tree) --> [].

% this is a word
% get the category information for parse tree

leaf(FS, Tree) =--> : % handle lexical entries
f Word 1, % get the vord
{ lex(Woxrd, FS) }, % get word’s feature structure
{ find_category(FS5, Cat } }, % get category of feature structure
{ Tree =..[Cat,Word] }. % make parse tree
%
%
% patr

% Read in a sentence and parse it with the start symbol. By starting
7% the parse with a feature structure with the ’cat’ feature

7 specified as the start symbol, the only good parses are those

% that result in a parse whose ’cat’ feature is that start symbol.

patr :-
read_in(Sentence), % read in the sentence
start(Symbol)}, % get the start symbol
find_category(S, Symbol)}, % create filter for sentence parse
parse{ S, Sentence). % parse the sentence

%
%
% parse(Structure, Sentence)}

A

% Imput :

% Structure - feature structure vhose structure the parse must
4 match

93

% Sentence - sentence to parse
%4

% .
% Get all parses for a sentence and print them out. Read in a
% nev sentence and parse it.

% no more sentences
parse(S, end_of_file):- !.

% parse sentences

parse(5, [0) :- ¢,
read_in{ NewSentence),
parse(S, NewSentence),

parse(S, Sentence) :-
set_timer, % set runtime timer
% get all parses and parse trees for a sentence
bagof(S-Tree, parse(S,Tree,Sentence,[}), Parses),!,

format_stats, % print runtime statistics
print_parses(Parses,0), % print parses

read_in(NewSentence), % read in a new sentence
parse(5, NewSentence). % parse that sentence

% error - couldn’t parse

parse(5, NoParse) :-
format_stats, % print runtime statistics
% print error message
format (’“n*x+ Cannot parse “w™n’,[NoParse]),
read_in(NevSentence), % read a nev sentence
parse(S, NevSentence). Y% parse that sentence

%
4
% print_parses(Parses, NumParses)

kA

% Input :

% Parses ~ list of parses and parse trees for a given sentence
% NuwParses - numher of parses for the sentence

%4

%

% Print the parses and parse trees for a2 sentence,

% print analysis on each parse

94

print_parses([Parse-Tree | Parses], Count) :-
% increment count of number of parses
NewCount is Count + 1,
% print analysis
format(’ nAnalysis # ~d:"n"nParse Tree = “wn’,[NewCount,Tree]),
format(’"p™n’,[Parse]),
print_parses{ Parses, NewCount). % next parse

% no more parses
print_parses([], Count) :-
% print count of number of parses
format(’ "nNumber of Parses = “d™n’,[Count]).

%
% concat{ Atoml, Atom2, Atom)
%

% Input :

% Atoml - firat atom

% Atom? - second atom .
%

% Output :

% Atom - concatenation of Atoml and Atom2

A

%

% Concatenate two atoms.

concat(Atoml, Atom2, Result) :-

name{ Atoml, Listl), % put in list form
pame{ Atom2, List2), % put in liat form
append(Listl, List2, List3), % concatenate as lista
name (Result, List3). % make into an atom

%
%
% append(Listi, List2, List)
A

% Input :

% Listl - first list

% List2 - second list

%

% Dutput :

95

% List - concatenation of Listl and List2
y)
%

" % Concatenate two lists.

% a list appended to the empty list is that list
append([, List, List).

% a list appended to another adds the head to a new list
append([Head | List1], List2, [Head | List3 1) :-
append{ Listl, List2, List3).

Y —
%

. % find_category(FS, Cat)

%

% Imput :

% FS5 - a feature structure to get the category value from
%

% Output :

% Cat - category value of the feature structure

%

A

% Get the value of the category attribute in the FS.

find_category(Lhs, Cat) :-
thepath(main, cat, Lhs, Cat), ¥ get category of nonterminal
atomic(Cat), !.

% if Cat value isn’t an atom, make it X
tind_category{ Lhs, x).

Ymmmm
%

% mewber{ Element, List)

%

% Input :

% Element - element to check membership of
% List - list to check membership in

%

4

% Check whether an element is a member of a list.

96

% element is head of the other list
member(Element, [Element | _Rest]) :- !.

% keep searching the list
member(Element, [_Head | Reat]) :-
member(Element, Rest).

Y _ ——
%

% set_timer

%

%

% Reset runtime timer.

set_timer :- .
statistics(runtime, [_, _RunTime]).

Y- —
%

% format_stats

%

%4

% Print runtime information

format_stats :-
statisties(runtime, [_, Stats J), % get runtime
Time is Stats/1000, - % convert to seconds
format(*“nRuntime = “f™n’, [Time]). ¥ print runtime.

Y. —————————— e _—

%

% string size(Atom, Size)

%

% Input :

% Atom - atom to get length of

%

% Dutput :

% Size - number of characters in the atom
%

97

%

% Get the number of characters in an atom.

string_size(String, Size) :=-
name(String, List), ¥ make into a list
length(List, Size). 7 get the length of the list

% thepath(Node, Label, Term, Value)

% Input :
% Hode - start feature
% Label - current feature

% Dutput :
% Term - feature structure
%4 Value - value of Label attribute

%
7 Return of the value of the path <Node,Label>,

thepath(Node, Label, Term, Value) :-
% get the structure of the FS
feature_order(Hode, FS, Term),

member(Label:Value, FS). % get the value

Y-

%

% case_shift(Token, NewToken)

%

% Input :

% Token - current input token

%

% Output :

%4 HNewToken - Token in all lower case.
%

%4

% Convert token to all lower case.

98

% if upper case, comvert to lower

case_shift([Upper | Mixed }, [Letter | Lower 1) :-
upper{ Upper), !,
Letter is Uppert32, 7 make lower case
case_shift{ Mixed, Lower).

% dif not upper case, ignore ’
case_shift([Other | Mixed], [Dther | Lower 1) :-

case_shift(Mixed, Lower).

% no more to lower case
case_shift(0, 0O).

o

A

% alpha_numeric(Char)

A

% Input :

% Char - character to check
%

%

% Check whether a character is alphanumeric.

alpha_numeric{Ch) :-

{ upper(¢h) % A.Z
: Ch>= 97, Ch =< 122 % a..z
; digit(Ch) % 0..9
; Ch =95 % .
; Ch = 63 Lo
: Ch = 42 YRS
; Ch= 39 % nonstandard "¢
;s Ch =96 % nonstandard "¢®
).
%
%
% digit{ Char)
%
% Input :
% Char - character to check
%
%

99

% Check whether a character is a digit.

digit(Ch) :- % 0..9
(Ch >= 48
, Ch =< 57
).

% upper(Char)
% Input :
% Char - character to check

% Check vhether a character is an upper case letter.

uppex(Ch) :- 4 A.Z
(Ch »>= 65
, Ch =< 90
).

% input delimiters

full_stop(46). A
end_file{ -1). % end of file

nev_line(10). % new line

100

RS

References

[1] Alfred Aho,” Ravi Sethi, and Jeffrey D. Ullman. Principles of Compiler
Design. Addlson Wesley Publishing Co., 1986.

[2] John Bear. A morphological recognizer with syntactic and phonological
rules. In Proceedings of the Eleventh Iniernational Conference on Compu-
tational Linguistics, University of Bonn, Bonn, German Federal Republic,
25-29 August 1986.

[3] W.F. Clocksin and CS. Melhsb Programming in Proleg. Springer-Verlag,
Berlin, 1981.

{4] John E. Hoperoft and Jeffrey D. Ullman. Introduction to Aulomata Theory,
Languages and Computation. Addison-Wesley Publishing Co., 1979.

[6] Lauri Karttunen. D-PATR: a development environment for unification-
based grammars. CSLI Report No. CSLI-86-61, CSLI, Stanford, California,
1986.

[6] Yuji Matsumoto, Hozumi Tanaka, Hideki Hirakawa, Hideo Miyoshi, and
Hideki Yasukawa. BUP: a bottom-up parser embedded in Prolog. New
Generation Computing, 1:145-158, 1983,

[7) Fernando C. N. Pereira. Logic for natural language analysis. Technical
Note 275, Artificial Intelligence Center, SRI International, Menlo Park,
California, 1983.

[8] Fernando C. N. Pereira and David H. D. Warren. Parsing as deduction.
In Proceedings of the 21st Annual Meeling of the Association for Com-
putational Linguistics, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 15-17 June 1983.

{9] Fernando C.N. Pereira. Deductive computation of grammar properties.
Forthcoming.

[10] Fernando C.N. Pereira and Stuart M. Shieber. Prolog and Natural Lan-
guage Analysis. CSLI, Stanford, California, 1987.

[11} D.J. Rosenkrantz and P.M. Lewis [I. Deterministic left corner parsing. In
IEEE Conference Record 11th Annual Symposium on Swiiching and Au-
tomata Theory, 1968.

[12] Stuart M. Shieber. Criteria for designing computer facilities for linguistic
analysis. Linguistics, 23:189-211, 1985.

101

[13] Stuart M. Shieber. The design of a computer language for linguistic in-
formation. In Proceedings of the Tenth Iniernational Conference on Com-
putational Linguistics, Stanford University, Stanford, California, 2-7 July
1984,

[14] Stuart M. Shieber. An Introduciion to Unification-Based Approaches 1o
Grammar. CSLI, Stanford, California, 1986.

[15] Stuart M. Shieber. The PATR-II experimental system. 1984. Stanford
University, Stanford, California.

[16] Stuart M. Shieber. Standard for the PATR computer language. Forthcom-
ing.

[17] Stuart M. Shieber, Lauri Karttunen, and Fernando C. N. Pereira.
Notes from the Unificalion Underground: A Compilalion of Papers on
Unification-Based Grammar Formalisms. Technical Report 327, Artificial
Intelligence Center, SRI International, Menlo Park, California, June 1984.

[18] Stuart M. Shieber, Hans Uszkoreit, Fernando C. N. Pereira, Jane J. Robin-
son, and Mabry Tyson. The formalism and implementation of PATR-II.
In Research on Interaclive Acquisition and Use of Knowledge, Artifictal
Intelligence Center, SRI International, Menlo Park, California, 1983.

[19] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Program-
ming Technigues. The MIT Press, Cambridge, Massachusetts, 1986.

[20] David Warren, Luis Pereira, and Fernando Pereira. Prolog - the language
and its implementation compared with Lisp. In Proceedings of the Sympo-
sium on Artificial Inlelligence and Progmmming Languages, University of
Rochester, Rochester, New York, 15-17 August 1977.

102

